Journal of Materials Science

, Volume 26, Issue 7, pp 1955–1970 | Cite as

Matrix effects on lifetime statistics for carbon fibre-epoxy microcomposites in creep rupture

  • H. Otani
  • S. L. Phoenix
  • P. Petrina


Experimental results are presented for the strength and lifetime in creep rupture of carbon-epoxy microcomposites consisting of seven carbon fibres (Hercules IM6) within an epoxy matrix (Dow DER 332 epoxy with Texaco Jeffamine T403 curing agent) in an approximately hexagonal configuration. Special attention was paid to clamping, specimen alignment, shock isolation and accurate lifetime measurement. The results were analysed using a previously developed model, which involves a Weibull distribution for fibre strength and micromechanical stress redistribution around fibre breaks where the matrix creeps in shear following a power law. The model yields Weibull distributions for both microcomposite strength and lifetime where the respective shape and scale parameters depend on model parameters such as the Weibull shape parameter for fibre strength, the exponent for matrix creep, and the effective load transfer length and critical cluster size for failed fibres. Experimental results were consistent with the theory, though a fractographic study suggested time-dependent debonding along the fibre-matrix interface as being a key mechanism. Arguments were given to suggest, however, that the overall analytical forms would essentially be preserved. The results were compared with earlier results using a different epoxy system (Dow DER 331 epoxy with DEH 26 curing agent). Values for the matrix creep exponent and the effective load transfer length were about double and triple respectively the values from the earlier study, leading to slightly reduced strength, about one-half the variability in lifetime, but almost one-half the value of the exponent for the power law relating microcomposite lifetime to stress level.


Epoxy Weibull Distribution Epoxy Matrix Fibre Strength Stress Redistribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. L. Phoenix, P. Schwartz and H. H. Robinson IV, Composites Sci. Tech. 32 (1988) 81–120.CrossRefGoogle Scholar
  2. 2.
    D. S. Farquhar, F. M. Mutrelle, S. L. Phoenix and R. L. Smith, J. Mater. Sci. 24 (1989) 2151–2164.CrossRefGoogle Scholar
  3. 3.
    A. N. Netravali, R. B. Henstenburg, S. L. Phoenix and P. Schwartz, Polym. Compos. 10 (1989) 226–241.CrossRefGoogle Scholar
  4. 4.
    A. S. Watson and R. L. Smith, J. Mater. Sci. 20 (1985) 3260–3270.CrossRefGoogle Scholar
  5. 5.
    J. Gutans and V. Tamuzs, Mech. Comps. Mater. 20 (1984) 1107–1109 (in Russian).Google Scholar
  6. 6.
    R. B. Henstenburg and S. L. Phoenix, Polym. Compos. 10 (1989) 389–408.CrossRefGoogle Scholar
  7. 7.
    R. Gulino and S. L. Phoenix, J. Mater. Sci. (1990) in press.Google Scholar
  8. 8.
    R. L. Smith, S. L. Phoenix, M. R. Greenfield, R. B. Henstenburg and R. E. Pitt, Proc. R. Soc. Lond. A388 (1983) 353–391.CrossRefGoogle Scholar
  9. 9.
    S. L. Phoenix and R. L. Smith, Int. J. Solid Structures 19 (1983) 479–496.CrossRefGoogle Scholar
  10. 10.
    D. C. Lagoudas, C. Y. Hui and S. L. Phoenix, ibid. 25 (1988), 45–66.CrossRefGoogle Scholar
  11. 11.
    H. H. Robinson IV, H. F. Wu, M. Ames and P. Schwartz, Rev. Sci. Instrum. 58 (1987) 436–440.CrossRefGoogle Scholar
  12. 12.
    H. D. Wagner, S. L. Phoenix and P. Schwartz, J. Compos. Mater. 18 (1984) 312–338.CrossRefGoogle Scholar
  13. 13.
    H. D. Wagner, J. Polym. Sci:. Polym. Phys. 27 (1989) 115–149.CrossRefGoogle Scholar
  14. 14.
    A. C. Cohen, Technometrics 7 (1965) 579–588.CrossRefGoogle Scholar
  15. 15.
    D. D. Mason, “Time Dependence of the Displacement Fields around Fibre Breaks in a Composite with a Power-Law Creeping Matrix”, Ph.D. Thesis, Cornell University, Ithaca, N.Y. 14853.Google Scholar
  16. 16.
    R. Gulino, P. Schwartz and S. L. Phoenix, J. Mater. Sci. (1990) in press.Google Scholar
  17. 17.
    R. A. Schapery, Int. J. Fracture 11 (1975) 141–159, 369–387, 549–562.CrossRefGoogle Scholar
  18. 18.
    R. M. Christensen, J. Rheology 25 (1981) 517–528.CrossRefGoogle Scholar
  19. 19.
    R. M. Christensen, and R. E. Glaser, ASME J. Appl. Mech. 52 (1985) 1–5.CrossRefGoogle Scholar
  20. 20.
    J. M. Whitney and L. T. Drzal, ASTM STP 937(Ameri can Society for Testing and Materials, Philadelphia, (1987) 179–196.Google Scholar
  21. 21.
    J. T. Shaffer in “Materials for Space-The Gathering Momentum, Proceedings of the 18th International SAMPE Technical Conference”, edited by J. T. Hoggatt, S. G. Hill, and J. C. Johonson, Seattle WA, 7–9 Oct., 1986.Google Scholar
  22. 22.
    H. E. Daniels, Proc. Roy. Soc. London A 183 (1945) 405–435.CrossRefGoogle Scholar
  23. 23.
    L. N. McCartney and R. L. Smith, ASME J. Appl. Mech., 105 (1983) 601–608.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • H. Otani
    • 1
  • S. L. Phoenix
    • 1
  • P. Petrina
    • 1
  1. 1.Department of Theoretical and Applied Mechanics, Thurston HallCornell UniversityIthacaUSA

Personalised recommendations