Advertisement

Journal of Materials Science

, Volume 26, Issue 7, pp 1919–1930 | Cite as

The fracture morphology of fast unstable fracture in polycarbonate

  • C. M. Agrawal
  • G. W. Pearsall
Papers

Abstract

Fracture tests were conducted on polycarbonate using compact tension specimens. With the aid of fractographic analysis techniques the effects of various geometric and test parameters on the fracture-surface morphology were studied. Four distinct regions were identified on the fracture surface: (i) initiation region, (ii) mist region, (iii) mirror region, and (iv) banded region. The extent of the mist region was found to depend inversely on the ratio of the initial crack length, a, and the specimen width, W. The fracture morphology also was affected by changes in the test temperature and externally applied compressive loads, but it did not exhibit any significant trends as a function of the loading rate. A qualitative model, called the “critical thickness craze crack interaction” (CCI) model, was developed to explain the micromechanisms involved in the fracture process. This model is based on the proposition that the various features on the fracture surface are generated by the interaction of the crack with a critical thickness craze, where the latter is that part of the main craze which has a thickness greater than some critical thickness, d.

Keywords

Fracture Surface Crack Length Polycarbonate Compressive Load Initial Crack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. T. DiBenedetto and K. L. Trachte, J. Appl. Polym. Sci. 14 (1970) 2249.CrossRefGoogle Scholar
  2. 2.
    W. Döll, J. Mater. Sci. 10 (1975) 935.CrossRefGoogle Scholar
  3. 3.
    D. Hull, in “Deformation and Fracture of High Polymers” (Plenum Press, New York, 1973) p. 171.CrossRefGoogle Scholar
  4. 4.
    N. Verheulpen-Heymans, Polymer 20 (1979) 356.CrossRefGoogle Scholar
  5. 5.
    J. G. Williams and G. P. Marshall, in “Deformation and Fracture of High Polymers” (Plenum Press, New York, 1973) p. 557.CrossRefGoogle Scholar
  6. 6.
    R. J. Morgan and J. O'Neal, Polym. Engng Sci. 18 (1978) 1081.CrossRefGoogle Scholar
  7. 7.
    E. J. Kramer and E. W. Hart, Polymer 25 (1984) 1667.CrossRefGoogle Scholar
  8. 8.
    W. G. Knauss, Appl. Mech. Rev. 26 (1973) 1.Google Scholar
  9. 9.
    R. P. Kambour and R. E. Barker, J. Polym. Sci. A2, 4 (1966) 359.CrossRefGoogle Scholar
  10. 10.
    R. N. Haward, B. M. Murphy and E. F. T. White, ibid. 9 (1971) 801.CrossRefGoogle Scholar
  11. 11.
    T. Chan, A. M. Donald and E. J. Kramer, J. Mater. Sci. 16 (1981) 676.CrossRefGoogle Scholar
  12. 12.
    C. J.G. Plummer and A. M. Donald, J. Polym. Sci. B 27 (1989) 325.CrossRefGoogle Scholar
  13. 13.
    A. M. Donald and E. J. Kramer, J. Mater. Sci. 16 (1981) 2977.CrossRefGoogle Scholar
  14. 14.
    E. Passaglia, Polymer 25 (1984) 1727.CrossRefGoogle Scholar
  15. 15.
    J. Murray and D. Hull, J. Polym. Sci. A2 8 (1970) 583.Google Scholar
  16. 16.
    R. J. Morgan and J. E. O'Neal, Polymer 20 (1979) 375.CrossRefGoogle Scholar
  17. 17.
    R. J. Morgan and J. E. O'Neal, J. Polym. Sci. Polym. Phys. Ed 14 (1976) 1053.CrossRefGoogle Scholar
  18. 18.
    D. Hull and T. W. Owen, ibid. 11 (1973) 2039.CrossRefGoogle Scholar
  19. 19.
    P. Beahan, M. Bevis and D. Hull, J. Mater. Sci. 8(1972) 162.CrossRefGoogle Scholar
  20. 20.
    L. H. Lee, J. F. Mandell and F. J. McGarry, Polym. Engng Sci. 27 (1987) 1128.CrossRefGoogle Scholar
  21. 21.
    J. Murray and D. Hull, Polymer 10 (1969) 451.CrossRefGoogle Scholar
  22. 22.
    M. J. Doyle, A. Maranci, E. Orowan and S. T. Stork, Proc. R. Soc. London, Ser. A 329 (1972) 137.CrossRefGoogle Scholar
  23. 23.
    E. H. Andrews, “Fracture in Polymers” (Aberdeen University Press, London, 1968) p. 182.Google Scholar
  24. 24.
    R. Ravetti, W. W. Gerberich and T. E. Hutchinson, J. Mater. Sci. 10 (1975) 1441.CrossRefGoogle Scholar
  25. 25.
    M. J. Doyle, ibid. 10 (1975) 300.CrossRefGoogle Scholar
  26. 26.
    R. P. Kusy and D. T. Turner, Polymer 18 (1977) 391.CrossRefGoogle Scholar
  27. 27.
    G. H. Jacoby, in “Electron Microfractography”, ASTM STP 453 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1969) p. 147.CrossRefGoogle Scholar
  28. 28.
    R. P. Kusy, H. B. Lee and D. T. Turner, J. Mater. Sci. 11 (1976) 118.CrossRefGoogle Scholar
  29. 29.
    A. P. Glover, F. A. Johnson and J. C. Radon, Polym. Engng Sci. 14 (1974) 420.CrossRefGoogle Scholar
  30. 30.
    A. K. Green and P. L. Pratt, Engng Fract. Mech. 6 (1974) 71.CrossRefGoogle Scholar
  31. 31.
    “Standard Method of Test for Plane Strain Fracture”, ASTM E399-83, ASTM Annual Standards (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1986).Google Scholar
  32. 32.
    J. F. Knott, in “Fundamentals of Fracture Mechanics” (Halsted Press, New York, 1979) p. 130.Google Scholar
  33. 33.
    L. E. Pittman, MS Thesis, Duke University, Durham (1985).Google Scholar
  34. 34.
    C. M. Agrawal and G. W. Pearsall, in “Proceedings of the 14th International Symposium on Testing and Failure Analysis”, Los Angeles, 1988 (ASM International, Metals Park, 1988) p. 405.Google Scholar
  35. 35.
    C. M. Agrawal and G. W. Pearsall, submitted.Google Scholar
  36. 36.
    M. J. Doyle, J. Mater. Sci. 10 (1975) 159.CrossRefGoogle Scholar
  37. 37.
    C. M. Agrawal and G. W. Pearsall. Unpublished research.Google Scholar
  38. 38.
    A. N. Gent, J. Mater. Sci. 5 (1970) 925.CrossRefGoogle Scholar
  39. 39.
    O. K. Spurr and W. D. Niegisch, J. Appl. Polym. Sci. 6 (1962) 585.CrossRefGoogle Scholar
  40. 40.
    A. M. Donald, J. Mater. Sci. 20 (1985) 2630.CrossRefGoogle Scholar
  41. 41.
    M. J. Wert, A. Saxena and H. A. Ernst, J. Testing Evaln 18 (1990) 1.CrossRefGoogle Scholar
  42. 42.
    R. P. Kambour, A. S. Holik and S. Miller, J. Polym. Sci. Polym. Phys. Ed. 16 (1978) 91.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • C. M. Agrawal
    • 1
  • G. W. Pearsall
    • 1
  1. 1.Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA

Personalised recommendations