Journal of Materials Science

, Volume 26, Issue 7, pp 1882–1890 | Cite as

Thermal, mechanical and chemical effects in the degradation of the plasma-deposited α-SiC:H passivation layer in a multilayer thin-film device

  • L. S. Chang
  • P. L. Gendler
  • J. -H. Jou


Amorphous, hydrogenated silicon carbide (α-SiC:H) deposited by a plasma-enhanced-chemical-vapour-deposition (PECVD) process has been used as the topmost passivation layer in a multilayer thin-film device, namely, a thermal ink-jet printhead. Normal operations of the device involve rapid heating of the multilayer structure at several kHz, repetitively forming vapour bubbles that grow and collapse in an otherwise liquid environment. During such operations, the α-SiC:H layer is subjected to a variety of thermal, mechanical and chemical stresses that are detrimental to its integrity. It is found that thermally activated failures may occur when the multilayer structure is driven for extended periods of time or by pulses of excessive magnitude or duration, or when the α-SiC:H film is so thick as to store excessive elastic energy due to large differential thermal expansion effects. It is also found that severe mechanical (namely, cavitation) effects associated with bubble collapse cause early device failures if the surface of the device is exposed to an unlimited liquid reservoir; however, such adverse effects are greatly mitigated by the presence of a nozzle plate in the vicinity of the top surface. Finally, it is shown that high pH and various chemicals tend to etch the α-SiC:H thin film through an oxidation-dissolution process, removing the passivating material rapidly and leading to device failures.


Cavitation Multilayer Structure Passivation Layer Vapour Bubble Expansion Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. E. Nelson, F. A. Halden and A. Rosengreen, J. Appl. Phys. 37 (1966) 333.CrossRefGoogle Scholar
  2. 2.
    K. E. Bean and P. S. Glein, J. Electrochem. Soc. 114 (1967) 1158.CrossRefGoogle Scholar
  3. 3.
    K. Kuroiwa and T. Sugano, ibid. 120 (1973) 138.CrossRefGoogle Scholar
  4. 4.
    A. J. Learn and K. E. Haq, J. Appl. Phys. 40 (1969) 430.CrossRefGoogle Scholar
  5. 5.
    Idem., Appl. Phys. Lett. 17 (1970) 26.CrossRefGoogle Scholar
  6. 6.
    D. A. Anderson and W. E. Spear, Phil. Mag. 35 (1977) 1.CrossRefGoogle Scholar
  7. 7.
    Y. Catherine and G. Turban, Thin Solid Films 60 (1979) 193.CrossRefGoogle Scholar
  8. 8.
    H. Yoshihara, H. Mori and M. Kiuchi, ibid. 76 (1981) 1.CrossRefGoogle Scholar
  9. 9.
    D. Ilic, Solid State Tech. 25 (1982) 91.CrossRefGoogle Scholar
  10. 10.
    A. Sproul, D. R. McKenzie and D. J. H. Cockayne, Phil. Mag. B 54 (1986) 113.CrossRefGoogle Scholar
  11. 11.
    M. A. Bayne, Z. Kurokawa, N. U. Okorie, B. D. Roe and L. Johnson, Thin Solid Films 107 (1983) 201.CrossRefGoogle Scholar
  12. 12.
    K. Kamata, N. Aizawa and M. Moriyama, J. Mater. Sci. Lett. 5 (1986) 1055.CrossRefGoogle Scholar
  13. 13.
    S. Motojima, N. Iwamori, T. Hattori and K. Kurosawa, J. Mater. Sci. 21 (1986) 1363.CrossRefGoogle Scholar
  14. 14.
    J. M. Eldridge, J. O. Moore, G. Olive and V. Dunton, J. Electrochem. Soc. 137 (1990) 2266.CrossRefGoogle Scholar
  15. 15.
    M. Ikeda, Presentation at the 18th Inst. Graphics Comm. Ann. Conf. on Ink-Jet Printing (Amsterdam, March, 1985).Google Scholar
  16. 16.
    E. V. Bhaskar and J. S. Aden, Hewlett-Packard J. 36 (1985) 27.Google Scholar
  17. 17.
    G. Olive, J. M. Eldridge and J. O. Moore, Presentation at the 1986 Soc. Inform. Display (SID) Symposium (San Diego, May, 1986).Google Scholar
  18. 18.
    L. S. Chang and G. Olive, Proceedings SID 28 (1987) 477.Google Scholar
  19. 19.
    L. S. Chang, ibid. 30 (1989) 57.Google Scholar
  20. 20.
    W.-Y. Lee, J. Appl. Phys. 51 (1980) 3365.CrossRefGoogle Scholar
  21. 21.
    M. A. Petrich, K. K. Gleason and J. A. Reiner, Phys. Rev. B 36 (1987) 9722.CrossRefGoogle Scholar
  22. 22.
    R. W. Hoffman, Surf. Interf. Anal. 3 (1981) 62.CrossRefGoogle Scholar
  23. 23.
    J. H. Jou, L. Hsu and L. S. Chang, Thin Solid Films (in press).Google Scholar
  24. 24.
    E. Klokholm, IBM J. Res. Dev. 31 (1987) 585.CrossRefGoogle Scholar
  25. 25.
    E. Suhir, ASME J. Appl. Mech. 53 (1986) 657.CrossRefGoogle Scholar
  26. 26.
    A. Karimi and J. L. Martin, Int. Met. Rev. 31 (1986) 1.CrossRefGoogle Scholar
  27. 27.
    L. R. Blake, B. B. Taib and G. Doherty, J. Fluid Mech. 170 (1988) 479.CrossRefGoogle Scholar
  28. 28.
    L. S. Chang and P. L. Gendler, 63rd ACS Colloid and Surface Science Symposium (Seattle, June, 1989).Google Scholar
  29. 29.
    G. B. Alexander, W. M. Heston and R. K. Iler, J. Phys. Chem. 58 (1954) 453.CrossRefGoogle Scholar
  30. 30.
    P. L. Gendler and L. S. Chang, submitted. Chem. Mater. Google Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • L. S. Chang
    • 1
  • P. L. Gendler
    • 1
  • J. -H. Jou
    • 1
  1. 1.IBM Research DivisionAlmaden Research CenterSan JoseUSA

Personalised recommendations