Advertisement

Journal of Materials Science

, Volume 26, Issue 7, pp 1803–1807 | Cite as

Sinter-forged YBa2Cu3O7−x superconducting ceramics from the spray-roasted powders

  • Gun Yong Sung
  • C. B. Carter
  • Doo Hi Cho
  • Chong Hee Kim
Papers

Abstract

The effect of applying a uniaxial stress, while varying the temperature and the time of sinter-forging, on the microstructure and critical current density of the sinter-forged YBa2Cu3O7−x ceramics has been investigated. Spray-roasted powders from a nitrate-based feed solution were prepared as the starting materials. By applying a relatively low uniaxial stress (2 MPa), the sintered density increased up to 95% of the maximum value. Critical current densities of between 360 and 420 A cm−2 were obtained for the sinter-forged samples which are significantly higher than values reported for pressureless-sintered samples prepared from solid-state reacted powders (typically 70 A cm−2). This increase in the density of the material and the critical current density can be explained by the alignment of the elongated YBa2Cu3O7−x grains under applied uniaxial stress during sintering. The elongated YBa2Cu3O7−x grains have been characterized by transmission electron microscopy.

Keywords

Polymer Microstructure Microscopy Electron Microscopy Transmission Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. R. Dinger, T. K. Worthington, W. J. Gallagher and R. L. Standstrom, Phys. Rev. Lett. 58 (1987) 2687.CrossRefGoogle Scholar
  2. 2.
    G. W. Crabtree, J. Z. Liu, A. Umezawa, W. K. Kwok, C. H. Sowers, S. K. Malik, B. W. Veal, D. J. Lam, M. B. Brodsky and J. W. Downey, ibid. B36 (1987) 4021.Google Scholar
  3. 3.
    P. Chaudhari, J. Mannhart, D. Dimos, C. C. Tsuei, J. Chi, M. M. Oprysko and M. Scheuermann, ibid. 60 (1988) 1653.CrossRefGoogle Scholar
  4. 4.
    N. M. Hwang, Y. K. Park, H. K. Lee, J. H. Han, G. W. Bang, K. W. Lee, H. G. Moon and J. C. Park, J. Amer. Ceram. Soc. 71 (1988) C210.CrossRefGoogle Scholar
  5. 5.
    T. Matsushita, B. Ni, Y. Sudo, M. Iwakuma, K. Funaki, M. Takeo and K. Yamahuji, Jpn J. Appl. Phys. 27 (1988) 929.CrossRefGoogle Scholar
  6. 6.
    Q. Robinson, P. Georgopoulos, D. L. Johnson, H. O. Harcy, C. R. Kannewurf, S. J. Hwu, T. J. Marks, K. R. Poeppelmeier, S. N. Song and J. B. Ketterson, Adv. Ceram. Mater. 2 (1988) 380.CrossRefGoogle Scholar
  7. 7.
    M. N. Rahaman, L. C. De Jonghe and M. Chu, ibid. 3 (1988) 393.CrossRefGoogle Scholar
  8. 8.
    M. H. Hodge, W. R. Bitler and R. C. Bradt, J. Amer. Ceram. Soc. 56 (1973) 497.CrossRefGoogle Scholar
  9. 9.
    S. K. Dey and J. S. Reed, Amer. Ceram. Soc. Bull. 64 (1985) 571.Google Scholar
  10. 10.
    K. R. Venkatachari and R. Raj, J. Amer. Ceram. Soc. 69 (1986) 499.CrossRefGoogle Scholar
  11. 11.
    M. N. Rahaman, L. C. De Jonghe and C. H. Hsueh, ibid. 69 (1986) 58.CrossRefGoogle Scholar
  12. 12.
    M. N. Rahaman, L. C. De Jonghe and R. J. Brook, ibid. 69 (1986) 53.CrossRefGoogle Scholar
  13. 13.
    A. G. Evans, ibid. 65 (1986) 497.CrossRefGoogle Scholar
  14. 14.
    R. Raj, ibid. 65 (1982) C-46.CrossRefGoogle Scholar
  15. 15.
    R. R. Neurgaonkar, G. Shoop, J. R. Oliver and I. Santha, A. S. Bhalla and L. E. Cross, Mater. Res. Bull. 23 (1988) 143.CrossRefGoogle Scholar
  16. 16.
    R. E. Loehman, W. F. Hammetter, E. L. Venturini, R. H. Moore and F. P. Gerstle Jr, J. Amer. Ceram. Soc. 72 (1989) 669.CrossRefGoogle Scholar
  17. 17.
    K. Sadananda, A. K. Singh, M. A. Iman, M. Osofsky, V. Le Tourneau and L. E. Richards, Adv. Ceram. Mater. 3 (1988) 524.CrossRefGoogle Scholar
  18. 18.
    I.-W. Chen, X. Wu, S. J. Keating, C. Y. Keating, P. A. Johnson and T.-Y. Tien, J. Amer. Ceram. Soc. 70 (1987) C-388.Google Scholar
  19. 19.
    K. A. Johnson, K. P. Staudhammer, W. J. Medina, C. B. Pierce and N. E. Elliott, Scripta Metall. 22 (1988) 1689.CrossRefGoogle Scholar
  20. 20.
    M. K. Malik, V. D. Nair, A. R. Biswas, R. V. Raghavan, P. Chaddah, P. K. Mishra, G. R. Kumar and B. A. Dasannacharya, Appl. Phys. Lett. 52 (1988) 1525.CrossRefGoogle Scholar
  21. 21.
    K. Salama, V. Selvamanickam, L. Gao and K. Sun, ibid. 54 (1989) 2352.CrossRefGoogle Scholar
  22. 22.
    N. M. Alford, J. D. Birchall, W. J. Clegg and K. Kendall, J. Appl. Phys. 65 (1989) 2856.CrossRefGoogle Scholar
  23. 23.
    S. Jin, T. H. Tiefel, R. C. Sherwood, M. E. Davis, R. B. Van Dover, G. W. Kammlott, R. A. Fastnacht and H. D. Keith, Appl. Phys. Lett. 52 (1988) 2074.CrossRefGoogle Scholar
  24. 24.
    S. Jin, T. H. Tiefel, R. C. Sherwood, R. B. Van Dover, M. E. Davis, G. W. Kammlott and R. A. Fastnacht, Phys. Rev. B37 (1988) 7850.CrossRefGoogle Scholar
  25. 25.
    G. Y. Sung and C. H. Kim, Adv. Ceram. Mater. 3 (1988) 604.CrossRefGoogle Scholar
  26. 26.
    R. Beyers, G. Lim, E. M. Engler, R. J. Savoy, T. M. Shaw, T. R. Dinger, W. J. Gallagher and R. L. Sandstrom, Appl. Phys. Lett. 50 (1987) 1918.CrossRefGoogle Scholar
  27. 27.
    Y. Syono, M. Kikuchi, K. Ohishi, K. Hiraga, H. Arai, Y. Matsui, N. Kobayashi, T. Sasaoka and Y. Muto, Jpn J. Appl. Phys. 26 (1987) L498.CrossRefGoogle Scholar
  28. 28.
    G. Van Tendeloo, H. W. Zandbergen and S. Amelinckx, Solid State Commun. 63 (1987) 389.CrossRefGoogle Scholar
  29. 29.
    M. Hervieu, B. Domenges, C. Michel, G. Heger, J. Provost and B. Raveau, Phys. Rev. B36 (1987) 3920.CrossRefGoogle Scholar
  30. 30.
    S. Iijima, T. Ichhashi, Y. Kubo and J. Tabuchi, Jpn J. Appl. Phys. Pt 2 26 (1987) L1478.CrossRefGoogle Scholar
  31. 31.
    M. Sarikaya, R. Kikuchi and I. A. Aksay, Physica C 152 (1988) 161.CrossRefGoogle Scholar
  32. 32.
    T. M. Shaw, S. L. Shinde, D. Dimos, R. F. Cook, P. R. Duncombe and C. Kroll, J. Mater. Res. 4 (1989) 248.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • Gun Yong Sung
    • 1
  • C. B. Carter
    • 1
  • Doo Hi Cho
    • 2
  • Chong Hee Kim
    • 2
  1. 1.Department of Materials Science and Engineering, Bard HallCornell UniversityIthacaUSA
  2. 2.Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyCheongryang, SeoulKorea

Personalised recommendations