Journal of Materials Science

, Volume 26, Issue 7, pp 1793–1798 | Cite as

Temperature dependence of the elastic moduli and damping for polycrystalline LiF-22% CaF2 eutectic salt

  • A. Wolfenden
  • G. Lastrapes
  • M. B. Duggan
  • S. V. Raj


The Young's and shear moduli and damping were measured for as-cast polycrystalline LiF-22 (mol%) CaF2 eutectic specimens as a function of temperature using the piezoelectric ultrasonic composite oscillator technique (PUCOT). The shear modulus decreased with increasing temperature from about 40 GPa at 295 K to about 30 GPa at 1000 K, while the Young's modulus decreased from about 115 GPa at 295 K to about 35 GPa at 900 K. These values are compared with those derived from the rule of mixtures using elastic moduli data for LiF and CaF2 single crystals. It is shown that, while the shear modulus data agree reasonably well with the predicted trend, there is a large discrepancy between the theoretical calculations and the Young's modulus values, where this disagreement increases with increasing temperature. The reason for this discrepancy is unclear but several possibilities are examined and discussed. The effective activation energy for damping was determined to be about 0.21 eV/atom which was found to be in reasonable agreement with the activation energy for migration of anion vacancies in the CaF2 phase.


Migration Activation Energy Elastic Modulus Shear Modulus Theoretical Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Misra and J. D. Whittenberger, Proceedings of the 22nd Intersociety Energy Conversion Engineering Conference (IECEC '87), Philadelphia (American Institute of Aeronautics and Astronautics, Washington, DC, 1987) p. 188.Google Scholar
  2. 2.
    A. K. Misra, J. Electrochem. Soc. 135 (1988) 850.CrossRefGoogle Scholar
  3. 3.
    W. E. Roake, ibid. 104 (1957) 661.CrossRefGoogle Scholar
  4. 4.
    M. O. Dustin, J. M. Savino, D. E. Lacy, R. P. Migra, A. L. Juhasz and C. E. Coles, “Solar Engineering-1987” edited by D. Y. Goswami, K. Watanabe and H. M. Healey, (The American Society of Mechanical Engineers, New York 1987) p. 574.Google Scholar
  5. 5.
    S. V. Raj and J. D. Whittenberger, J. Amer. Ceram. Soc., 73 (1990) 403.CrossRefGoogle Scholar
  6. 6.
    S. V. Raj and J. D. Whittenberger, to be published.Google Scholar
  7. 7.
    S. V. Raj and J. D. Whittenberger, “Strength of Metals and Alloys (ICSMA 8)”, edited by P. O. Kettunen, T. K. Lepistö and M. E. Lehtonen (Pergamon, Oxford, 1988). pp. 1007–1012.Google Scholar
  8. 8.
    J. Marx, Rev. Sci. Instrum., 22 (1951) 503.CrossRefGoogle Scholar
  9. 9.
    W. H. Robinson and A. Edgar, IEEE Trans. Sonics Ultrasonics SU-21 (1974) 98.CrossRefGoogle Scholar
  10. 10.
    J. L. Tallon and A. Wolfenden, J. Phys. Chem. Solids 40 (1979) 831.CrossRefGoogle Scholar
  11. 11.
    M. R. Harmouche and A. Wolfenden, Mater. Sci. Eng. 84 (1986) 35.CrossRefGoogle Scholar
  12. 12.
    J. M. Wolla and A. Wolfenden, ASTM STP 1045 (American Society for Testing and Materials, Philadelphia, 1989) p. 110.Google Scholar
  13. 13.
    “Thermal Expansion (Nonmetallic Solids), Thermophysical Properties of Matter (TPRC Data Series)”, Vol. 13, Purdue Research Foundation (Plenum, New York, 1977).Google Scholar
  14. 14.
    W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics” (Wiley, New York, 1976) p. 775.Google Scholar
  15. 15.
    M. E. Fine and N. T. Kenney, J. Metals 4 (1952) 151.Google Scholar
  16. 16.
    M. E. Fine, ASTM STP 129 (American Society for Testing of Materials, Philadelphia, 1952) p. 43.Google Scholar
  17. 17.
    R. W. Ure, J. Chem. Phys., 26 (1957) 1363.CrossRefGoogle Scholar
  18. 18.
    E. Barsis and A. Taylor, ibid. 45 (1966) 1154.CrossRefGoogle Scholar
  19. 19.
    Hj. Matzke, J. Mater. Sci. 5 (1970) 831.CrossRefGoogle Scholar
  20. 20.
    R. Van Steenwinkel, Z. Naturforsch. A29 (1974) 278.Google Scholar
  21. 21.
    A. D. Franklin, J. Phys. Chem. Solids 26 (1964) 933.CrossRefGoogle Scholar
  22. 22.
    Idem., ibid 29 (1968) 823.CrossRefGoogle Scholar
  23. 23.
    R. J. Lysiak and P. P. Mahendroo, J. Chem. Phys. 44 (1966) 4025.CrossRefGoogle Scholar
  24. 24.
    G. A. Keig and R. L. Coble, J. Appl. Phys. 39 (1968) 6090.CrossRefGoogle Scholar
  25. 25.
    H. J. Stöckmann, D. Dubbers, M. Grupp, H. Grupp, H. Ackermann and P. Heitjans, Z. Phys. B30 (1978) 19.Google Scholar
  26. 26.
    A. G. Evans and P. L. Pratt, Phil. Mag. 20 (1969) 1213.CrossRefGoogle Scholar
  27. 27.
    S. Chowdhury, S. K. Sen and D. Roy, Phys. Status Solidi B 56 (1973) 403.CrossRefGoogle Scholar
  28. 28.
    T. G. Stoebe and R. A. Huggins, J. Mater. Sci. 1 (1966) 117.CrossRefGoogle Scholar
  29. 29.
    G. Simmons and H. Wang, “Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook” (MIT Press, Cambridge, Mass, 1971).Google Scholar
  30. 30.
    Z. Hashin and S. Shtrikman, J. Mech. Phys. Sol. 10 (1962) 335.CrossRefGoogle Scholar
  31. 31.
    Idem., ibid. 10 (1962) 343.CrossRefGoogle Scholar
  32. 32.
    M. F. Ashby, Acta Metall. 20 (1972) 887.CrossRefGoogle Scholar
  33. 33.
    H. J. Frost and M. F. Ashby, “Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics” (Pergamon, Oxford, 1982).Google Scholar
  34. 34.
    E. Schreiber, O. L. Anderson and N. Soga, “Elastic Constants and Their Measurements” (McGraw-Hill, New York, 1973) p. 6.Google Scholar
  35. 35.
    Y. M. Chernov and A. V. Stepanov, Sov. Phys. 3 (1962) 2097.Google Scholar
  36. 36.
    S. P. Nikanorov, B. K. Kardashev and N. S. Kas'kovich, ibid, 10 (1968) 703.Google Scholar
  37. 37.
    S. Hart, Brit. J. Appl. Phys. 1 (1968) 1285.Google Scholar
  38. 38.
    D. Vidal, C. R. Acad. Sci. B279 (1974) 345.Google Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • A. Wolfenden
    • 1
  • G. Lastrapes
    • 1
  • M. B. Duggan
    • 1
  • S. V. Raj
    • 2
  1. 1.Mechanical Engineering Department and Advanced Materials LaboratoryTexas A & M UniversityCollege StationUSA
  2. 2.NASA Lewis Research CenterClevelandUSA

Personalised recommendations