Journal of Materials Science

, Volume 26, Issue 7, pp 1781–1787 | Cite as

Pulse response functions of dielectric susceptibility

  • Y. Y. Yeung
  • F. G. Shin


As dielectric response in the time domain is becoming increasingly of experimental relevance and as such responses for quite a number of well-established susceptibility formulae are still unknown, we examine in this paper how pulse response functions may be calculated from susceptibility by use of various integral transform methods. We need to specialize some parameters in many cases to keep the mathematics sufficiently tractable. The asymptotic behaviour of pulse responses are then classified. Finally we comment on the adequacy of the Shin-Yeung response in the time domain.


Polymer Asymptotic Behaviour Response Function Dielectric Response Pulse Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. J. F. Böttcher and P. Bordewijk, “Theory of Electric Polarization”, Vol. II (Elsevier, Holland, 1978).Google Scholar
  2. 2.
    P. Debye, Physik. Z. 13 (1912) 97.Google Scholar
  3. 3.
    G. Williams and D. C. Watts, Trans. Faraday Soc. 66 (1970) 80.CrossRefGoogle Scholar
  4. 4.
    L. A. Dissado and R. M. Hill, Nature 279 (1979) 685.CrossRefGoogle Scholar
  5. 5.
    F. G. Shin and Y. Y. Yeung, J. Mater. Sci. Lett. 16 (1988) 1066.CrossRefGoogle Scholar
  6. 6.
    K. S. Cole and R. H. Cole, J. Chem. Phys. 9 (1941) 341.CrossRefGoogle Scholar
  7. 7.
    D. W. Davidson and R. H. Cole, ibid. 19 (1951) 1484.CrossRefGoogle Scholar
  8. 8.
    S. Havriliak and S. Negami, J. Polym. Sci. 14 (1966) 99.Google Scholar
  9. 9.
    E. Nakamura and R. Ishida, J. Phys. Soc. Jpn 29 (1970) 695.CrossRefGoogle Scholar
  10. 10.
    R. M. Fuoss and J. G. Kirkwood, J. Amer. Chem. Soc. 63 (1941) 385.CrossRefGoogle Scholar
  11. 11.
    A. K. Jonscher, Colloid Polym. Sci. 253 (1975) 231.CrossRefGoogle Scholar
  12. 12.
    R. M. Hill, Nature 275 (1978) 96.CrossRefGoogle Scholar
  13. 13.
    F. G. Shin and Y. Y. Yeung, J. Mater. Sci. Lett. 8 (1989) 879.CrossRefGoogle Scholar
  14. 14.
    J. G. Kirkwood and R. M. Fuoss, J. Chem. Phys. 9 (1941) 329.CrossRefGoogle Scholar
  15. 15.
    H. Fröhlich, “Theory of Dielectrics” (Clarendon Press, Oxford, 1949) p. 93.Google Scholar
  16. 16.
    A. Matsumoto and K. Higasi, J. Chem. Phys. 36 (1962) 1776.CrossRefGoogle Scholar
  17. 17.
    A. Erdélyi (editor), “Tables of Integral Transforms”, Vol. I, (McGraw-Hill, New York, 1954).Google Scholar
  18. 18.
    A. Erdélyi (editor), “Higher Transcendental Functions”, Vol. I (McGraw-Hill, New York, 1953).Google Scholar
  19. 19.
    L. A. Dissado and R. M. Hill, Proc. Roy. Soc. London A390 (1983) 131.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • Y. Y. Yeung
    • 1
  • F. G. Shin
    • 1
  1. 1.Department of Applied PhysicsHong Kong PolytechnicHung Hom, KowloonHong Kong

Personalised recommendations