Journal of Materials Science

, Volume 26, Issue 7, pp 1762–1768 | Cite as

Molecular composites of poly(p-phenylene benzobisthiazole) with thermoplastics: coagulation studies

  • C. R. Hwang
  • M. F. Malone
  • R. J. Farris


The solubility limits of solutions of poly (p-phenylene benzobisthiazole) (PBZT), poly(ether-ether-ketone), and two nylons (du Pont, Zytel®42 and Zytel®330) in methane sulphonic acid (MSA) were determined by turbidimetric titration with water. The solubilities rank as follows: Zytel®42 > Zytel®330 > PEEK > PBZT. The coagulation of solutions of these polymers was examined in two limiting case: very slow (exposure to water vapour) and very fast (immersion in a water bath) coagulation rates. The slow coagulation of ternary solutions shows that PBZT may either precipitate first from the composite solutions or coprecipitate with the thermoplastic depending on their relative solubility. The immersion coagulation process can be described by a simple diffusion model and the diffusion coefficient of water in the polymer solution is determined to be on the order of 10−5 cm2s−1. Our results suggest that PBZT will coagulate first from ternary solutions of PBZT, nylon, and MSA during wet-spinning, resulting in a continuous microfibrillar network structure of PBZT followed by the precipitation of nylon.


Water Vapour Nylon Sulphonic Acid Solubility Limit Coagulation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. A. Pottick, and R. J. Farris TAPPI Proceedings: 1985 Non Wovens Symposium, 85 (1985) 65.Google Scholar
  2. 2.
    W. F. Hwang, D. R. Wiff, T. E. Helminiak and W. W. Adams, ACS Div. Org. Coat. Plast. Chem. Preps. 48 (1982) 929.Google Scholar
  3. 3.
    W. F. Hwang, D. R. Wiff, C. Verschoore, G. E. Price, T. E. Helminiak and W. W. Adams, Poly. Eng. Sci. 23 (1983) 784.CrossRefGoogle Scholar
  4. 4.
    W. F. Hwang, D. R. Wiff, C. L. Benner and T. E. Helminiak, J. Macromol. Sci. Phys. B22 (1983) 231.CrossRefGoogle Scholar
  5. 5.
    P. M. Cotts and G. C. Berry, J. Polym. Sci. Polym.-Phys. 21 (1983) 1255.CrossRefGoogle Scholar
  6. 6.
    T. E. Helminiak, M. Wellman, W. F. Hwang, D. R. Wiff, V. Rodgers and C. Benner, AFWAL-TR-80-4163 (1980).Google Scholar
  7. 7.
    D. R. Paul, in “Fibers From Polymer Blends”, edited by D. R. Paul and S. Newman (Academic Press, New York, 1978) Ch. 16.CrossRefGoogle Scholar
  8. 8.
    J. R. Booth, Appl. Polym. Symp. 6 (1967) 89.Google Scholar
  9. 9.
    D. R. Paul, J. Appl. Polym. Sci. 12 (1968) 383.CrossRefGoogle Scholar
  10. 10.
    J. P. Knudsen, Text. Res. J. 33 (1963) 13.CrossRefGoogle Scholar
  11. 11.
    R. A. Vroom and D. W. Van Krevelen, in Proceedings of the 3rd European Symposium of Chemical Reaction Engineering, (Pergamon Press, Oxford, 1964) p. 147.Google Scholar
  12. 12.
    M. E. Epstein and A. J. Rosenthal, Text. Res. J. 36 (1966) 813.CrossRefGoogle Scholar
  13. 13.
    A. Rende, J. Appl. Polym. Sci. 16 (1972) 585.CrossRefGoogle Scholar
  14. 14.
    H. L. Doppert and G. J. Harmsen, ibid. 17 (1973) 893.CrossRefGoogle Scholar
  15. 15.
    W. Wu and D. R. Paul, Tex. Res. J. 48 (1978) 230.CrossRefGoogle Scholar
  16. 16.
    J. F. Wolfe, B. H. Loo and F. E. Arnold, Macromol. 14 (1981) 915.CrossRefGoogle Scholar
  17. 17.
    T. S. Ma and R. C. Rittner, in “Modern Organic Elemental Analysis” (Marcel Dekker Inc., New York, 1979) pp. 35 and 207.Google Scholar
  18. 18.
    A. Ziabicki, in “Fundamentals of Fiber Formation: The Science of Fiber Spinning and Drawing” (Wiley and Sons, New York, 1976) pp. 298–320.Google Scholar
  19. 19.
    H. Strathmann and K. Kock, Desalination, 21 (1977) 241.CrossRefGoogle Scholar
  20. 20.
    C. A. Gabriel, Ph.D. Thesis, University of Massachusetts, Amherst (1987).Google Scholar
  21. 21.
    T. K. Sherwood, R. L. Pigford and C. R. Wilke, in “Mass Transfer” (McGraw-Hill, New York, 1975) p. 37.Google Scholar
  22. 22.
    J. Crank, in “The Mathematics of Diffusion”, 2nd Edn (Oxford University Press, London, 1975) pp. 73–80.Google Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • C. R. Hwang
    • 1
  • M. F. Malone
    • 1
  • R. J. Farris
    • 2
  1. 1.Chemical EngineeringUniversity of Massachusetts at AmherstAmherstUSA
  2. 2.Polymer Science and Engineering DepartmentsUniversity of Massachusetts at AmherstAmherstUSA

Personalised recommendations