Advertisement

Journal of Materials Science

, Volume 26, Issue 7, pp 1749–1754 | Cite as

Corrosion of silicon nitride ceramics under hydrothermal conditions

  • T. Sato
  • T. Murakami
  • T. Endo
  • M. Shimada
  • K. Komeya
  • T. Kameda
  • M. Komatsu
Papers

Abstract

Corrosion behaviour of Si3N4 ceramics containing Y2O3, Al2O3 and AIN as sintering aids was investigated under hydrothermal conditions at 200–300 ‡C and saturated vapour pressures of water for 1–10 days. Hydrothermal corrosion resulted in the dissolution of the Si3N4 matrix and the formation of a product layer consisting of the original grain-boundary phases and hydrated silica. The dissolution rate of Si3N4 ceramics decreased with decreasing crystallinity of the grain-boundary phase. The dissolution rate could be adequately described by a parabolic plot in the initial stage of the reaction. The apparent activation energies were 83.5–108 kJ mol−1, and the bending strength of the corroded samples decreased from ∼ 600 to 400 MPa in the initial stage of the reaction upto a weight loss of 0.004 g cm−2, and then was almost constant up to a weight loss of 0.012 g cm−2.

Keywords

Nitride Vapour Pressure Y2O3 Dissolution Rate Silicon Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Tsuge, K. Nishida and M. Komatsu, J. Amer. Ceram. Soc. 58 (1975) 323.CrossRefGoogle Scholar
  2. 2.
    T. Sato, Y. Tokunaga, T. Endo, M. Shimada, K. Komeya, K. Nishida, M. Komatsu and T. Kameda, J. Mater. Sci. 23 (1988) 3440.CrossRefGoogle Scholar
  3. 3.
    T. Sato, Y. Tokunaga, T. Endo, M. Shimada, K. Komeya, M. Komatsu and T. Kameda, J. Amer. Ceram. Soc. 71 (1988) 1074.CrossRefGoogle Scholar
  4. 4.
    M. Yoshimura, J. Kase and S. Somiya, Yogyo Kyokai-Shi 94 (1986) 129.Google Scholar
  5. 5.
    C. Contet, J. Kase, T. Noma, M. Yoshimura and S. Somiya, J. Mater. Sci. Lett. 6 (1987) 963.CrossRefGoogle Scholar
  6. 6.
    T. Yoshio, K. Oda, K. O-Oka and K. Oda, Yogyo Kyokai-Shi 94 (1986) 116.CrossRefGoogle Scholar
  7. 7.
    T. Yoshio, K. Oda and K. Oda, ibid. 95 (1987) 435.CrossRefGoogle Scholar
  8. 8.
    T. Yoshio and K. Oda, ibid. 95 (1987) 730.CrossRefGoogle Scholar
  9. 9.
    L. L. Hench, J. Non-Cryst. Solids 25 (1977) 343.CrossRefGoogle Scholar
  10. 10.
    M. L. Hair, “Infrared Spectroscopy in Surface Chemistry” (Marcel Dekker, New York, 1967) p. 173.Google Scholar
  11. 11.
    I. Burn and J. P. Roberts, Phys. Chem. Glasses 11 (1970) 106.Google Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • T. Sato
    • 1
  • T. Murakami
    • 1
  • T. Endo
    • 1
  • M. Shimada
    • 1
  • K. Komeya
    • 2
  • T. Kameda
    • 2
  • M. Komatsu
    • 2
  1. 1.Department of Molecular Chemistry and Engineering, Faculty of EngineeringTohoku UniversitySendaiJapan
  2. 2.New Material Engineering LaboratoryToshiba CorporationYokohamaJapan

Personalised recommendations