Journal of Materials Science

, Volume 26, Issue 7, pp 1734–1740 | Cite as

Recrystallization in β brass

  • D. G. Morris
  • M. A. Morris


Recrystallization has been studied in Β brass in order to evaluate the influence of order on the recrystallization process. Recrystallization takes place by the formation of new grains at shear band — grain boundary intersections followed by grain growth and coalescence. Recrystallization occurs most readily at temperatures near the critical ordering temperature where the alloy has partial or short-range order and this is because both new grain formation and grain growth are fastest. Dislocation recovery processes are more difficult within the partially ordered materials and a larger strain energy is retained to drive recrystallization.


Polymer Recrystallization Shear Band Recovery Process Large Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. M. Borodkina, E. I. Detalf and Y. D. Selisskii, Phys. Met. Metallog. 7 (1959) 50.Google Scholar
  2. 2.
    Y. P. Selisskii and M. N. Tolochko, Phys. Met. Metallog. 13 (1962) 98.Google Scholar
  3. 3.
    A. E. Vidoz, D. P. Lazarevic and R. W. Cahn, Acta Metall. 11 (1963) 17.CrossRefGoogle Scholar
  4. 4.
    A. A. Goldenberg and Y. P. Selisskii, Phys. Met. Metallog. 15 (1963) 64.Google Scholar
  5. 5.
    R. G. Davies and N. S. Stoloff, Trans. Met. Soc. A.I.M.E. 236 (1966) 1605.Google Scholar
  6. 6.
    W. B. Hutchinson, F. M. C. Besag and C. V. Honess, Acta Metall. 21 (1973) 1685.CrossRefGoogle Scholar
  7. 7.
    G. R. Haff and E. M. Schulson, Met. Trans. 13A (1982) 1563.CrossRefGoogle Scholar
  8. 8.
    I. Baker, D. V. Viens and E. M. Schulson, J. Mater. Sci. 19 (1984) 1799.CrossRefGoogle Scholar
  9. 9.
    G. Gottstein, P. Nagpal and W. Kim, Mater. Sci. Eng. A108 (1989) 165.CrossRefGoogle Scholar
  10. 10.
    A. A. Goldenberg and Y. P. Selisskii, Fiz. Metal. Metalloved. 15 (1963) 717.Google Scholar
  11. 11.
    Y. Calvayrac and M. Fayard, Acta Metall. 14 (1966) 783.CrossRefGoogle Scholar
  12. 12.
    C. L. Corey and D. I. Potter, J. Appl. Phys. 38 (1967) 3894.CrossRefGoogle Scholar
  13. 13.
    R. G. Davies, J. Phys. Chem. Solids 24 (1963) 985.CrossRefGoogle Scholar
  14. 14.
    A. L. Ward and D. E. Mikkola, Met. Trans. 3A (1972) 1479.CrossRefGoogle Scholar
  15. 15.
    M. Feller-Kneipmeier and F. Ruckert, Z. Metallkde. 66 (1975) 427.Google Scholar
  16. 16.
    R. A. Buckley, Met. Sci. 13 (1979) 67.CrossRefGoogle Scholar
  17. 17.
    B. A. Greenberg and Yu. N. Gornostirev, Scripta Metall. 19 (1985) 1391.CrossRefGoogle Scholar
  18. 18.
    Idem. ibid. 19 (1985) 1397.CrossRefGoogle Scholar
  19. 19.
    R. W. Cahn, “Recrystallization, Grain Growth, and Textures”, edited by H. Margolin, (American Society of Metals, Metals Park, OH, 1966) p. 99.Google Scholar
  20. 20.
    M. M. Shea and N. S. Stoloff, Met. Trans. 5 (1974) 577.CrossRefGoogle Scholar
  21. 21.
    A. B. Kuper, D. Lazarus, J. R. Manning and C. T. Tomizuka, Phys. Rev. 104 (1956) 1536.CrossRefGoogle Scholar
  22. 22.
    R. A. D. MacKenzie and S. L. Sass, Scripta Metall. 22 (1988) 1807.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • D. G. Morris
    • 1
  • M. A. Morris
    • 1
  1. 1.Institute of Structural MetallurgyUniversity of NeuchâtelNeuchâtelSwitzerland

Personalised recommendations