Advertisement

Journal of Materials Science

, Volume 27, Issue 6, pp 1683–1689 | Cite as

Indentation behaviour of alloyed zirconia ceramics

  • J. T. Czernuszka
  • T. F. Page
Papers

Abstract

The hardness behaviour of four partially stabilized zirconias has been examined as a function of load and temperature. For all materials, it was found that as the load was decreased the hardness increased, by up to 50%. However, a further reduction in load caused a drastic reduction in hardness. The degree of this near-surface softening could be correlated to the proportion of tetragonal phase present. As the temperature of indentation was increased the hardness decreased. Irrespective of alloying and ageing, the hardness values tended towards the same value at the eutectoid temperature.

Keywords

Polymer Zirconia Tetragonal Phase Drastic Reduction Alloyed Zirconia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. J. Hannink and R. C. Garvie, J. Mater. Sci.17 (1982) 2637.CrossRefGoogle Scholar
  2. 2.
    R. H. J. Hannink, K. A. Johnston, R. T. Pasoe and R. C. Garvie, in “Advances in Ceramics”, Vol. 3, “Science and Technology of Zirconia” edited by A. H. Heuer and L. W. Hobbs (American Ceramic Society, Columbus, OH. 1981) pp. 11–36.Google Scholar
  3. 3.
    N. Claussen, Froc. Brit. Ceram. Soc.34 (1984) 157.Google Scholar
  4. 4.
    P. M. Sargent and T. F. Page, ibid.26 (1978) 209.Google Scholar
  5. 5.
    M. G. S. Naylor and T. F. Page, J. Microsc.130 (1983) 345.CrossRefGoogle Scholar
  6. 6.
    A. G. Atkins, A. A. Dos Silverio and D. Tabor, J. Inst. Metals94 (1966) 369.Google Scholar
  7. 7.
    J. T. Czernuszka and T. F. Page, J. Amer. Ceram. Soc.68 (1985) C196.Google Scholar
  8. 8.
    R. H. J. Hannink and M. V. Swain, J. Mater. Sci.16 (1981) 1428.CrossRefGoogle Scholar
  9. 9.
    R. Stevens, Magnesium Elektron Publ.113 (1983).Google Scholar
  10. 10.
    R. P. Ingel, D. Lewis, B. A. Bender and R. W. Rice, in ‘Advances in Ceramics”, Vol. 12, “Science of Technology of Zirconia 2”, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, OH, 1984) p. 408.Google Scholar
  11. 11.
    J. T. Czernuszka, PhD Thesis, Cambridge University (1985).Google Scholar
  12. 12.
    J. H. Westbrook and P. J. Jorgensen, Trans. Met. Soc. AIME233 (1965) 425.Google Scholar
  13. 13.
    R. H. J. Hannink and M. V. Swain, in “Materials Science Research”, Vol. 18, “Deformation of Ceramic Materials 2”, edited by R. E. Tressler and R. C. Bradt (Plenum, New York, 1984) p. 69.Google Scholar
  14. 14.
    J. T. Czernuszka and T. F. Page, J. Mater. Sci.22 (1987) 3907.CrossRefGoogle Scholar
  15. 15.
    M. G. S. Naylor and T. F. Page, 3rd Annual Technical Report USAERO, Grant No. DA-ERO-78-G-010 (1981).Google Scholar
  16. 16.
    D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys” (Van Nostrand Reinhold, Wokingham, UK, 1981).Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • J. T. Czernuszka
    • 1
  • T. F. Page
    • 1
  1. 1.Department of Metallurgy and Materials ScienceUniversity of CambridgeCambridgeUK

Personalised recommendations