Journal of Materials Science

, Volume 27, Issue 6, pp 1575–1584 | Cite as

Liquid-phase sintering in the glass-cordierite system

  • Jau -Ho Jean
  • T. K. Gupta


Densification mechanisms and kinetics of liquid-phase sintering were studied using borosilicate glass-cordierite as a model system. It is shown that the sintering behaviour can be represented predominantly by a non-reactive liquid-phase sintering and that the densification is achieved mainly in the initial stage of sintering. From the activation energy estimates of densification, it is concluded that the predominant mechanism of densification is the viscous flow of glass with contribution arising from both viscous sintering of glass and glass redistribution kinetics. The latter evidence stems from the microstructural observation that as the sintering proceeds, the glass undergoes a time-dependent wetting behaviour. Based on this observation, and calculated infiltration times of melt into the porous compact, it is found that the time-dependent contact angle between the melt and the solid particles plays a significant role in the glass redistribution process.


Contact Angle Viscous Flow Energy Estimate Microstructural Observation Sinter Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. S. Cannon and F. V. Lenel, in “Proceedings of the Plansee Seminar”, edited by F. Benesovsky (Metallwerk Plansee, Reutte, 1953) p. 106.Google Scholar
  2. 2.
    W. J. Huppmann and G. Petzow, in “Sintering Process”, edited by G. C. Kuczynski (Plenum Press, New York, 1980) p. 189.CrossRefGoogle Scholar
  3. 3.
    W. J. Huppmann and G. Petzow, Ber. Bunsenges Phys. Chem.82 (1978) 308.CrossRefGoogle Scholar
  4. 4.
    R. M. German, in “Liquid Phase Sintering” (Plenum Press, New York, 1985) Ch. 4.CrossRefGoogle Scholar
  5. 5.
    J. H. Jean and C. H. Lin, J. Mater. Sci.24 (1989) 500.CrossRefGoogle Scholar
  6. 6.
    R. M. German, in “Liquid Phase Sintering” (Plenum Press, New York, 1985) Ch. 4.CrossRefGoogle Scholar
  7. 7.
    V. N. Eremenko, Y. V. Naidich and I. A. Lavrinenko, in “Liquid Phase Sintering” (Consultants Bureau, New York, 1970) Ch. 4.CrossRefGoogle Scholar
  8. 8.
    K. V. Sebastian and G. S. Tendolkar, Powder Metall. Int.11 (1979) 62.Google Scholar
  9. 9.
    W. D. Kingery, E. Niki and M. D. Narasimhan, J. Amer. Ceram. Soc.44 (1961) 29.CrossRefGoogle Scholar
  10. 10.
    K. G. Ewsuk, L. W. Harrison and F. J. Walczak, in “Ceramic Transations”, Vol. 1, edited by G. L. Messing, E. R. Fuller and H. Hausner Jr (American Ceramic Society, Westerville, 1988) p. 969.Google Scholar
  11. 11.
    K. S. Hwang, PhD thesis, Rensselaer Polytechnic Institute, Troy (1984).Google Scholar
  12. 12.
    J. W. Cahn and R. B. Heady, J. Amer. Ceram. Soc.53 (1970) 406.CrossRefGoogle Scholar
  13. 13.
    W. J. Huppmann and H. Riegger, Acta Metall.23 (1975) 965.CrossRefGoogle Scholar
  14. 14.
    J. Szekely, in “Fluid Flow Phenomena in Metals Processing” (Academic Press, New York, 1979) Ch. 1.Google Scholar
  15. 15.
    Y. V. Naidich, I. A. Lavrinemko and V. A. Eudokimov, Sov. Powder Metall. Met. Ceram.13 (1974) 26.CrossRefGoogle Scholar
  16. 16.
    W. D. Kingery, J. Appl. Phys.30 (1959) 301.CrossRefGoogle Scholar
  17. 17.
    O. H. Kwon, PhD thesis, Pennsylvania State University (1986).Google Scholar
  18. 18.
    J. Frenkel, J. Phys. (USSR)IX (1945) 385.Google Scholar
  19. 19.
    J. K. Mackenzie and R. Shuttleworth, Proc. Phys. Soc. Lond. B62 (1949) 833.CrossRefGoogle Scholar
  20. 20.
    G. W. Scherer, J. Amer. Ceram. Soc.60 (1977) 236.CrossRefGoogle Scholar
  21. 21.
    S. Pejovnik, D. Kolar, W. J. Huppmann and G. Petzow, in “Sintering — New Developments”, edited by M. M. Ristic (Elsevier Scientific, Amsterdam, Netherlands, 1979) p. 285.Google Scholar
  22. 22.
    R. R. Tummala and B. J. Foster, J. Mater. Sci. Lett.10 (1975) 905.CrossRefGoogle Scholar
  23. 23.
    S. Newman, J. Colloid Interface Sci.26 (1968) 209.CrossRefGoogle Scholar
  24. 24.
    D. H. R. Sarma, PhD thesis, Purdue University (1982).Google Scholar
  25. 25.
    R. A. Greenkorn and D. P. Kessler, in “Transfer Operations” (McGraw-Hill, New York, 1972) p. 59.Google Scholar
  26. 26.
    I. H. Shames, in “Mechanics of Fluids” (McGraw-Hill, New York, 1962) p. 94.Google Scholar
  27. 27.
    J. R. Ligenza and R. B. Berstein, J. Amer. Chem. Soc.73 (1951) 4636.CrossRefGoogle Scholar
  28. 28.
    J. Szekeley, A. W. Neumann and Y. K. Chuang, J. Colloid Interface Sci.35 (1971) 273.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Jau -Ho Jean
    • 1
  • T. K. Gupta
    • 1
  1. 1.Alcoa Technical Center, Alcoa CenterAlcoa Electronic Packaging, Inc.USA

Personalised recommendations