Prediction of a thermal shock damage map for glass plates
Papers
First Online:
- 46 Downloads
- 3 Citations
Abstract
A thermal shock damage map to qualitatively predict the effect of thermal quench on a glass plate is proposed based on thermoelastic and thermoviscoelastic stress theory. The map indicates that quenching a glass plate may induce either thermal shock damage and/or residual stresses. The theoretical analysis also generally agrees with experimental results reported for the thermal quench of polycrystalline alumina specimens with a significant glassy phase.
Keywords
Polymer Alumina Residual Stress Theoretical Analysis Glass Plate
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.D. Johnson-Walls, M. D. Drory and A. G. Evans, J. Amer. Ceram. Soc.68 (1985) 363.CrossRefGoogle Scholar
- 2.
- 3.D. P. H. Hasselman, R. Badaliance and E. P. Chen, in “Thermal Fatigue of Materials and Components”, ASTM STP 612 (1976) pp. 55–68.Google Scholar
- 4.H. Kamizono, J. Mater. Sci. Lett.3 (1984) 588.CrossRefGoogle Scholar
- 5.D. P. H. Hasselman, J. Amer. Ceram. Soc.52 (1969) 600.CrossRefGoogle Scholar
- 6.
- 7.F. V. Tooley, “Handbook of Glass Manufacture”, Vol. 1 (Ogden, New York, 1961) p. 391.Google Scholar
- 8.N. A. Travitzky, D. G. Brandon and E. Y. Gutmanas, Mater. Sci. Engng71 (1985) 77.CrossRefGoogle Scholar
- 9.
- 10.
- 11.
- 12.H. P. Kirchner, “Strengthening of Ceramics” (Dekker, New York, 1979) pp. 31–79.Google Scholar
- 13.B. A. Boley and J. H. Weiner, “Theory of Thermal Stresses” (Wiley, New York, 1960) p. 277.Google Scholar
- 14.
- 15.
- 16.F. Kreith, “Principles Of Heat Transfer” (International Textbook Co., Scranton, Pennsylvania, 1965) p. 174.Google Scholar
- 17.W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics” (Wiley, New York, 1976) pp. 816–822.Google Scholar
- 18.R. C. Buchanan, “Ceramic Materials for Electronics” (Dekker, New York, 1986) p. 8.Google Scholar
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.O. S. Narayanaswamy, J. Amer. Ceram. Soc.61 (1978) 146.CrossRefGoogle Scholar
- 25.R. M. Christensen, “Theory of Viscoelasticity”, 2nd Edn (Academic, New York, 1982) p. 5.Google Scholar
- 26.J. H. Batteh, J. Appl. Phys.54 (1983) 3769.CrossRefGoogle Scholar
- 27.
- 28.R. W. Hamming, “Numerical Methods for Scientists and Engineers” (McGraw-Hill, New York, 1962) p. 175.Google Scholar
Copyright information
© Chapman & Hall 1992