Journal of Materials Science

, Volume 27, Issue 20, pp 5671–5675 | Cite as

Ultralow expansion ceramics in the HfO2-TiO2 system synthesized by an hydrolysis and polycondensation technique

  • G. Tilloca


Ultra-refractory ceramics from the HfO2-TiO2 system in the range 30–40 mol% TiO2, with a near-zero thermal expansion, have been synthesized by hydrolysis and polycondensation of titanium alkoxide and hafnium dichloride alcoholic solutions and sintered at moderate temperature. Thermal stability, crystallization, density and microstructure of these materials have been examined. The as-prepared powder, amorphous at room temperature, crystallized quickly when heated at 500 ° C. Entire crystallization occurred after treatment at 1000 °C. Sintering at 1500 °C on cold-pressed samples led to ceramics with weak porosity (⩽7%), low expansion coefficient <1×10−6 °C with a minimum for 30 mol% TiO2 content. SEM examination on sintered materials at 1500 °C reveals a grain size from 2–6 μm, increasing with TiO2 content.


TiO2 Crystallization Thermal Expansion Alkoxide Polycondensation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. A. Godina, E. K. Keler and V. S. Rudenko, J. Inorg. Chem. (USSR) 5 (1960) 1349.Google Scholar
  2. 2.
    F.-H. Simpson, Mater. Des. Eng. 52 (1960) 16.Google Scholar
  3. 3.
    R. W. Lynch and B. Morosin, J. Amer. Ceram. Soc. 55 (1972) 409.CrossRefGoogle Scholar
  4. 4.
    R. Ruh, G.-W. Hollenberg, E. G. Charles and V. A. Patel, ibid. 59 (1976) 495.CrossRefGoogle Scholar
  5. 5.
    G. A. Carlson, J. L. Anderson, R. A. Breismeiter, S. R. Skaggs and R. Ruh, J. Amer. Ceram. Soc. 60 (1977) 508.CrossRefGoogle Scholar
  6. 6.
    C. E. Holcombe, M. K. Morrow, D. D. Smith and D. A. Carpenter, Union Carbide Corporation Y.12 Plant Research Report Y-1913, “Survey of a low expanding high melting mixed oxides” (1974).Google Scholar
  7. 7.
    L'octet Franco-Canadien, High Temp. High Press. 13 (1981) 97–103.Google Scholar
  8. 8.
    P. Odier, B. Cales, P. Etchegut, and V. U. Tienloc, Rev. Int. Hautes Temp. Refract. Fr. 20 (1983) 45–54.Google Scholar
  9. 9.
    S. R. Skaggs, ibid. 16 (1979) 157.Google Scholar
  10. 10.
    K. S. Mazdiyasni and L. M. Brown, J. Amer. Ceram. Soc. 53 (1970) 585.CrossRefGoogle Scholar
  11. 11.
    P. A. Brugger and A. Mocellin, J. Mater. Sci. 21 (1986) 4431.CrossRefGoogle Scholar
  12. 12.
    W. R. Buessem and F. F. Lange, Interceram. 15 (1966) 229.Google Scholar
  13. 13.
    W. R. Manning, O. Hunter, J. R. F. W. Calder-Wood and D. W. Staacy, J. Amer. Ceram. Soc. 55 (1972) 342.CrossRefGoogle Scholar
  14. 14.
    J. A. Kuszyk and R. C. Bradt, ibid. 56 (1973) 420.CrossRefGoogle Scholar
  15. 15.
    C. E. Holcombe, J. R. Smith and D. D. Smith, ibid. 61 (1978) 163.CrossRefGoogle Scholar
  16. 16.
    R. G. Hoagland, C. W. Marschall and A.R. Rosenfield, Mater. Sci. Engng 15 (1974) 51.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • G. Tilloca
    • 1
  1. 1.Laboratoire de Sciences des Matériaux Vitreux, URA 1119Université Montpellier IIMontpellier Cédex 5France

Personalised recommendations