Journal of Materials Science

, Volume 27, Issue 20, pp 5635–5639 | Cite as

Rapid thermal annealing effects on InP grown by the LEC method

  • T. W. Kang
  • C. Y. Hong
  • B. H. Lim
  • Y. Shon
  • T. W. Kim


InP crystals, grown by the liquid-encapsulated Czochralski method, were prepared by rapid thermal annealing and were investigated by photoluminescence spectroscopy as a function of annealing time. In the photoluminescence spectra of as-grown samples, the 1.414 eV acceptor-bound peak and the 1.378 eV free-to-acceptor peak dominated. A shift toward higher energy was observed at high excitation intensity for the 1.375 eV peak of the donor-to-acceptor emission of InP. The dominant transition centred at the 1.378 eV peak can be ascribed to zinc impurities in the starting material. Changes in the excitation intensity and the sample temperature resulted in the identification of zinc-related free-to-acceptor transitions where the zinc ionization energy was calculated to be 46 meV. Analysis of the temperature-dependent data yield an activation energy of 47 meV.


Activation Energy Zinc Ionization Photoluminescence Spectrum Dominant Transition Rapid Thermal Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. S. Park, J. Appl. Phys. 52 (1981) 969.CrossRefGoogle Scholar
  2. 2.
    H. Temkin and W. A. Bonner, ibid. 52 (1981) 397.CrossRefGoogle Scholar
  3. 3.
    J. D. Oberstar and B. G. Stectman, J. Phys. 52 (1982) 5154.Google Scholar
  4. 4.
    P. K. Bhattacharya, W. H. Goodman and M. V. Rao, J. Appl. Phys. 55 (1984) 509.CrossRefGoogle Scholar
  5. 5.
    S. J. Pearton and K. D. Cummings, ibid. 58 (1985) 1500.CrossRefGoogle Scholar
  6. 6.
    H. Nishi, Nucl. Instrum. Methods B7-8 (1985) 395.CrossRefGoogle Scholar
  7. 7.
    C. W. Fareiy and B. G. Streetman, J. Electron. Mater. 18 (1984) 401.Google Scholar
  8. 8.
    R. M. Malbon, D. H. Lee and J. M. Whelan, J. Electrochem. Soc. 123 (1976) 1413.CrossRefGoogle Scholar
  9. 9.
    D. Eirug Davis, Mater. Res. Symp. 45 (1985) 216.Google Scholar
  10. 10.
    R. L. Hegebold, J. Appl. Phys. 52 (1981) 969.CrossRefGoogle Scholar
  11. 11.
    A. M. White, P. J. Dean, L. L. Taylor, R. C. Clarace, D. G. Ashen and J. B. Mullin, J. Phys. C5 (1972) 1727.Google Scholar
  12. 12.
    J. U. Fischback, G. Benz, N. Stath, M. H. Pilkuhn and K. W. Bernz, Solid State Commun. 11 (1972) 721.CrossRefGoogle Scholar
  13. 13.
    D. C. Reynolds, C. W. Litton, R. J. Almassy, S. B. Nam, P. J. Dean and R. D. Clarke, Phys. Rev. B13 (1976) 2507.CrossRefGoogle Scholar
  14. 14.
    J. B. Mullin, A. Royle, B. W. Straughah, P. J. Tufton and E. W. William, J. Crystal. Growth 13–14 (1972) 640.CrossRefGoogle Scholar
  15. 15.
    A. R. Clawson, W. Y. Lum and G. E. Ecwilliams, ibid. 46 (1979) 300.CrossRefGoogle Scholar
  16. 16.
    Y. P. Varshni, Physica. 34 (1967) 149.CrossRefGoogle Scholar
  17. 17.
    K. Lösch, W. Ekardt and D. Bimberg, Phys. Rev. B20 (1976) 3303.Google Scholar
  18. 18.
    H. L. Malm and R. R. Haering, Can. J. Phys. 49 (1971) 2970.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • T. W. Kang
    • 1
  • C. Y. Hong
    • 1
  • B. H. Lim
    • 1
  • Y. Shon
    • 1
  • T. W. Kim
    • 2
  1. 1.Department of PhysicsDongguk UniversitySeoulKorea
  2. 2.Department of PhysicsKwangwoon UniversitySeoulKorea

Personalised recommendations