Journal of Materials Science

, Volume 27, Issue 20, pp 5609–5619 | Cite as

Effects of thermal history on crystal structure of poly(phenylene sulphide)

  • J. S. Chung
  • J. Bodziuch
  • P. Cebe


The lattice parameters of film-grade poly(phenylene sulphide), PPS, have been studied at room temperature as a function of thermal history. Effects of crystallization temperature and annealing time for films crystallized from the rubbery amorphous state were investigated using wide- and small-angle X-ray diffraction, bulk density and thermal analysis techniques. The dimensions of the crystal lattice are found to depend upon prior thermal treatment conditions. As the cold crystallization temperature, Tc, increases, or the annealing time at fixed temperature increases, the bulk density, degree of crystallinity, and crystal perfection increase. With an increase in annealing time at fixed temperature, lattice a, b, and c decrease leading to an increase in lattice density. As the cold crystallization temperature increases, lattice density also increases as a result of a systematic decrease in lattice parameters a and b.


Thermal Analysis Temperature Increase Bulk Density Thermal Treatment Crystal Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. J. Tabor, E. P. Magre and J. Boon, Eur. Polym. J. 7 (1971) 1127.CrossRefGoogle Scholar
  2. 2.
    D. G. Brady, J. Appl. Polym. Sei. 20 (1976) 2541.CrossRefGoogle Scholar
  3. 3.
    A. J. Lovinger, D. D. Davis and F. J. Padden, Polymer 26 (1985) 1595.CrossRefGoogle Scholar
  4. 4.
    G. D. Andreetti, J. Garbarczyk and M. Krolikowska, Cryst. Struct. Commun. 10 (1981) 789.Google Scholar
  5. 5.
    J. Garbarczyk, Makromol. Chem. 187 (1986) 2489.CrossRefGoogle Scholar
  6. 6.
    Idem, Polym. Commun. 27 (1986) 335.Google Scholar
  7. 7.
    N. T. Wakelyn, J. Polym. Sci. Polym. Lett. 25 (1987) 25.CrossRefGoogle Scholar
  8. 8.
    J. N. Hay, J. I. Langford and J. R. Lloyd, Polymer 30 (1989) 489.CrossRefGoogle Scholar
  9. 9.
    J. S. Chung and P. Cebe, ibid. 33 (1992) 1594.CrossRefGoogle Scholar
  10. 10.
    Idem, J. Polym. Sci. Polym. Phys. Ed. 30 (1992) 163.CrossRefGoogle Scholar
  11. 11.
    P. Cebe and S. Chung, Polym. Compos. 11 (1990) 265.CrossRefGoogle Scholar
  12. 12.
    A. D. Mighell and J. K. Stalick (eds), “Crystal Data: Determinative Tables”, (US Department of Commerce, National Bureau of Standard and JCPDS-International Center for Diffraction Data, Swarthmore, PA, 1983).Google Scholar
  13. 13.
    P. Huo and P. Cebe, Mater. Res. Soc. Symp. Proc. 215 (1991) 93.CrossRefGoogle Scholar
  14. 14.
    Idem, J. Polym. Sci. Polym. Phys. Ed. 30 (1992) 239.CrossRefGoogle Scholar
  15. 15.
    S. Z. D. Cheng, B. Cao and B. Wunderlich, Macrolmol. 19 (1986) 1868.CrossRefGoogle Scholar
  16. 16.
    P. Huo and P. Cebe, Colloid. Polym. Sci. (1992) in press.Google Scholar
  17. 17.
    N. S. Murthy, R. L. Elsenbaumer, J. E. Frommer and R. H. Baughman, Synth. Met. 9 (1984) 91.CrossRefGoogle Scholar
  18. 18.
    L. D'Ilario and A. Piozzi. J. Mater. Sci. Lett. 8 (1989) 157.CrossRefGoogle Scholar
  19. 19.
    C. M. Hsiung, M. Cakmak and J. L. White, SPE ANTEC XXXII (1986) 128.Google Scholar
  20. 20.
    E. Maemura, M. Cakmak and J. L. White, Int. Polym. Proc. 2 (1988) 79.CrossRefGoogle Scholar
  21. 21.
    L. C. Lopez and G. L. Wilkes, Polymer 29 (1988) 106.CrossRefGoogle Scholar
  22. 22.
    J. S. Chung and P. Cebe, Polymer, parts I and II (1992) in press.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • J. S. Chung
    • 1
  • J. Bodziuch
    • 1
  • P. Cebe
    • 1
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations