Journal of Materials Science

, Volume 27, Issue 20, pp 5569–5574 | Cite as

Infiltration behaviour of an internal electrode and electrical properties of multilayer capacitors by electrode infiltration

  • Tae-Sung Oh
  • Chang-Bong Lee
  • Yoon-Ho Kim


The infiltration behaviour of a tin melt, as an internal electrode, to the porous layers, and the electrical properties of multilayer ceramic capacitors was investigated by electrode infiltration. By preventing green-state delamination between the dielectric green sheet and the carbon paste, uniform porous layers, 5 μm thick, could be formed after sintering. When 15 vol % ceramic pillars were added to the carbon paste, the porous layer of the sintered samples could be considered as a porous solid formed by many pores larger than 4 μm. The critical pressure for the infiltration of tin melt into such a porous layer was found to be 0.5 MPa. With a high infiltration pressure, the resistivity of multilayer capacitors was decreased to 108–109Ωcm due to the growth of micro-defects formed on the surface of the dielectric layers during the lamination process.


Polymer Electrical Property Lamination Dielectric Layer Porous Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Buchanan, in “Ceramic Materials for Electronics” (Marcel Dekker, New York, 1986) p. 98.Google Scholar
  2. 2.
    R.J. K. Wassink, in “Soldering in Electronics” (Electro-chemical Publications, Ayr, 1989) p. 390.Google Scholar
  3. 3.
    Y. Sakabe, Amer. Ceram. Soc. Bull. 66 (1987) 1338.Google Scholar
  4. 4.
    I. Burn and G. H. Maher, J. Mater. Sci. 10 (1975) 633.CrossRefGoogle Scholar
  5. 5.
    I. Burn, Amer. Ceram. Soc. Bull. 57 (1978) 600.Google Scholar
  6. 6.
    T. C. Rutt, US Pat. 3679 950 (1972).Google Scholar
  7. 7.
    Idem., US Pat. 3829 356 (1974).Google Scholar
  8. 8.
    Idem., US Pat. 4030 004 (1977).Google Scholar
  9. 9.
    R. Garcia and R. H. Marion, US Pat. 4584 629 (1986).Google Scholar
  10. 10.
    Y. Sakabe, S. Karaki and K. Nakano, Us Pat. 4652 967 (1987).Google Scholar
  11. 11.
    T. C. Rutt and J. A. Stynes, IEEE Trans. Parts Hybrids and Packaging PHP-9 (1973) 144.CrossRefGoogle Scholar
  12. 12.
    H. Takamizawa, K. Utsumi, M. Yonezawa and T. Ohno, IEEE Trans. Comp. Hybrids and Manufact. Technol. CHMT-4 (1983) 355.Google Scholar
  13. 13.
    J. G. Pepin, W. Barland, P'Ocallagham and R. J. S. Young, J. Amer. Ceram. Soc. 72 (1989) 2287.CrossRefGoogle Scholar
  14. 14.
    J. Y. Koh, PhD thesis, Seoul National University, Korea (1989).Google Scholar
  15. 15.
    F. Goodenough, Electron. Design 30 (1982) 35.Google Scholar
  16. 16.
    N. G. Eror, I. Burn and G. H. Maher, US Pat. 3920 781 (1975).Google Scholar
  17. 17.
    J. H. Alexander, UK Pat. GB 2103 422A (1981).Google Scholar
  18. 18.
    J. A. Stynes, US Pat. 4071 878 (1978).Google Scholar
  19. 19.
    T. C. Rutt and J. A. Stynes, US Pat. 3879 645 (1975).Google Scholar
  20. 20.
    T. C. Rutt, US Pat. 3965 552 (1976).Google Scholar
  21. 21.
    J. M. Herbert, in “Ceramic Dielectrics and Capacitors” (Gordon and Breach Science, New York, 1985) p. 229.Google Scholar
  22. 22.
    M. Yonezawa, Amer. Ceram. Soc. Bull 62 (1983) 1375.Google Scholar
  23. 23.
    B. V. Hiremath, R. E. Newnham, L. E. Cross and J. V. Biggers, Adv. Ceram. Mater. 3 (1988) 217.CrossRefGoogle Scholar
  24. 24.
    V. Beltran, A. Escardino, C. Feliu and Ma D. Rodrigo, Brit. Ceram. Trans. J. 87 (1988) 64.Google Scholar
  25. 25.
    K. A. Semlak and F. N. Rhines, AIME Trans. 212 (1958) 325.Google Scholar
  26. 26.
    F. Delanny, L. Froyen and A. Deruyttere, J. Mater. Sci. 22 (1987) 1.CrossRefGoogle Scholar
  27. 27.
    C. Toy and W. D. Scott, J. Amer. Ceram. Soc. 73 (1990) 97.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Tae-Sung Oh
    • 1
  • Chang-Bong Lee
    • 1
  • Yoon-Ho Kim
    • 1
  1. 1.Fine Ceramics LaboratoryKorea Institute of Science and TechnologyCheongryang, SeoulKorea

Personalised recommendations