Advertisement

Journal of Materials Science

, Volume 27, Issue 20, pp 5561–5568 | Cite as

Structural, phase and morphological features of plasmachemically synthesized ultradispersed particles

  • G. P. Vissokov
Papers

Abstract

An attempt has been made to characterize and explain some physical and physicochemical, including structural, phase and morphological features, of ultradispersed particles (UDP) of nitrides (Si3N4, AIN, TiN), oxides (Al2O3, FeO, Fe3O4, Fe2O3), metals (Fe) and catalysts (catalyst for ammonia synthesis), synthesized under electric arc low-temperature plasma (LTP) conditions. A relative decrease in the value of the crystal lattice period of up to 0.9% has been observed in ultradispersed powders with particle sizes up to 50 nm. For ultradispersed powders with admixtures, the crystal lattice period may decrease under the influence of the Laplace pressure or increase due to the introduction of admixtures in the main phase crystal lattice. The plasmachemically synthesized ultradispersed powders are built up by the respective high-temperature modifications which have minimum free surface energy, i.e. by phases with a maximum compact crystal lattice.

Keywords

Al2O3 Fe2O3 Nitrides Free Surface Crystal Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Vissokov, “Prilozhna plasmohimia. Prilozhenie na niskotemperaturnata plasma v neorganichnata himichna tehnologija”, Part I (Technika, Sofia, 1984).Google Scholar
  2. 1.
    Idem, ibid. (Technika, Sofia, 1987).Google Scholar
  3. 3.
    G. Vissokov, K. Manolova and L. Brakalov, J. Mater. Sci. 16 (1981) 1716.CrossRefGoogle Scholar
  4. 4.
    G. Vissokov, in “Plasmohimija-89”, edited by L. S. Polak, Vol. 1 (INHS USSR Academy of Science, Moscow, 1989) p. 33.Google Scholar
  5. 5.
    G. Vissokov, B. Stefanov, N. Gerasimov, D. Oliver, R. Enikov, A. Vrantchev, E. Balabanova and P. Pirgov, J. Mater. Sci. 23 (1988) 2415.CrossRefGoogle Scholar
  6. 6.
    G. Vissokov, Silikattechnik 40(8) (1989) 263.Google Scholar
  7. 7.
    G. Vissokov and L. Brakalov, J. Mater. Sci. 18 (1983) 2011.CrossRefGoogle Scholar
  8. 8.
    A. L. Klijachko-Gurvich, Izv. USSR Acad. Sci. 0HN 10 (1961) 1884.CrossRefGoogle Scholar
  9. 9.
    A. E. Petrov, V. I. Petinov and V. Plate, Fizika tverdogo tela 13 (1971) 1573.Google Scholar
  10. 10.
    I. D. Morohov, L. M. Trusov and V. N. Lapovik, Proc. USSR Acad. Sci. 25(4) (1980) 79.Google Scholar
  11. 11.
    A. I. Bublik and B. J. Pipes, ibid. 87 (1952) 2.Google Scholar
  12. 12.
    V. N. Troizkii, B. M. Grebzov and J. N. Nikulin, Porosh. metal. 169 (1977) 17.Google Scholar
  13. 13.
    T. Peev, G. Vissokov, I. Czako-Nagy and A. Ver-Tes, Appl. Catal. 19 (1985) 208.CrossRefGoogle Scholar
  14. 14.
    G. Vissokov, T. Peev, I. Czakonagy and A. Ver-Tes, ibid. 27 (1986) 301.Google Scholar
  15. 15.
    S. A. Semiletov, A. A. Zavjalova and R. M. Imamov, Izv. USSR Acad. Sci. Ser. Phys 41 (1977) 2230.Google Scholar
  16. 16.
    Bulgarian Pat. 30 383 (1980)Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • G. P. Vissokov
    • 1
  1. 1.Institute of ElectronicsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations