Journal of Materials Science

, Volume 27, Issue 20, pp 5553–5557 | Cite as

Formation of icosahedral phase by solid-state diffusion of alternating thin layers

  • I. Levi
  • D. Shechtman


Thin alternating layers of Al-Cr were produced by sputtering. Heat treatment transforms them to the icosahedral phase. The effect of the layer thickness on their ability to transform to single-phase icosahedral film was examined and it was found that very thin alternating layers react completely to form a single icosahedral phase, while heat treatment of thicker layers always produced the icosahedral phase with residual aluminium. An attempt has been made to explain the results based on the crystallographic structure of the icosahedral phase.


Polymer Aluminium Heat Treatment Thin Layer Layer Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Shechtman, I. Blech, D. Gratias and J. W. Cahn, Phys. Rev. Lett. 53 (1984) 1951.CrossRefGoogle Scholar
  2. 2.
    D. A. Lilienfeld, M. Nastasi, H. H. Johnson, D. G. Ast and J. W. Mayer, ibid. 55 (1985) 1587.CrossRefGoogle Scholar
  3. 3.
    D. M. Follstaedt and J. A. Knapp, J. Less-Common Metals 140 (1988) 375.CrossRefGoogle Scholar
  4. 4.
    Idem., Phys. Rev. Lett. 56 (1986) 1827.CrossRefGoogle Scholar
  5. 5.
    D. A. Lilienfeld, M. Nastasi, H. H. Johnson, D. G. Ast and J. W. Mayer, J. Mater. Res. 1(2) (1986) 237.CrossRefGoogle Scholar
  6. 6.
    K. G. Kreider, F. S. Biancaniello and M. J. KaufMan, Scripta. Metall. 21 (1987) 657.CrossRefGoogle Scholar
  7. 7.
    D. A. Porter and K. E. Easterling, “Phase Transformation in Metals and Alloys” (Van Nostrand Reinhold, 1981).Google Scholar
  8. 8.
    B. Grushko and D. Shechtman, J. Appl. Phys. 67 (1990) 2904.CrossRefGoogle Scholar
  9. 9.
    W. B. Pearson, “Handbook of Lattice Spacing and Structures of Metals and Alloys” (Pergamon Press, 1967).Google Scholar
  10. 10.
    M. J. Cooper, Acta Crystallogr. 13 (1960) 257.CrossRefGoogle Scholar
  11. 11.
    L. A. Bendersky, R. S. Roth, J. J. Ramon and D. Shechtman, Met. Trans. submitted.Google Scholar
  12. 12.
    E. A. Stern, Y. Ma, K. Bauer and C. E. Bouldin, J. Phys. Colloq. 47 (1986) c3–371.Google Scholar
  13. 13.
    T. C. Lubensky, in “Introduction to Quasicrystals”, edited by M. V. Jaric (Academic Press) p. 199.Google Scholar
  14. 14.
    A. J. Goldman, J. E. Shield, C. A. Guryam and P. W. Stephens, in “Proceedings of the Anniversary Adriatico Research Conference on Quasicrystals”, edited by M. V. Jaric and S. Lundqvist (World Scientific) p. 60.Google Scholar
  15. 15.
    J. W. Cahn and D. Gratias, J. Phys. Colloq. 47 (1986) c3–415.CrossRefGoogle Scholar
  16. 16.
    M. Audier and P. Guyot, ibid. 47 (1986) c3–405.CrossRefGoogle Scholar
  17. 17.
    L. N. Larikov, V. V. Geichenko and V. M. Fal'chenko. “Diffusion Processes in Ordered Alloys” (Amerind, New Delhi) translated.Google Scholar
  18. 18.
    W. L. Johnson, Met. Sci. Engng 97 (1988) 1.CrossRefGoogle Scholar
  19. 19.
    K. Samwer, H. Shroder and K. Pampus, ibid. 97 (1988) 63CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • I. Levi
    • 1
  • D. Shechtman
    • 1
  1. 1.Department of Material EngineeringTechnion, Israel Institute of TechnologyHaifaIsrael

Personalised recommendations