Advertisement

Journal of Materials Science

, Volume 27, Issue 20, pp 5539–5546 | Cite as

A refined statistical approach to thermal fatigue life prediction

  • F. Sudreau
  • C. Olagnon
  • G. Fantozzi
  • O. Leclercq
Papers

Abstract

Finding new applications for ceramic materials requires a better knowledge of thermal fatigue behaviour. However, result-scattering inherent to thermal fatigue and duration of a thermal fatigue cycle lead to a lack of experimental results. For these reasons, we have developed a new approach that permits the determination of a relevant stress intensity factor exponent n with a minimum testing sample number. From knowledge of the distribution function of artificial cracks, the analytical formula of the failure probability F(N) can be completely determined. Thus, it is possible to calculate n from a correlation of F(N) with experimental results obtained for only one temperature difference. Correlations between theoretical curves F(N) and experimental results, conducted for two temperature differences, lead to the same value of n. This and the good agreement between the experimental points and the theoretical curves validate this new approach.

Keywords

Temperature Difference Stress Intensity Intensity Factor Stress Intensity Factor Fatigue Life 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Horibe, J. Eur. Ceram. Soc. 6 (1990) 89.CrossRefGoogle Scholar
  2. 2.
    M. J. Reece, F. Guiu and M. F. R. Sammur, J. Am. Ceram. Soc. 72[2] (1989) 348.CrossRefGoogle Scholar
  3. 3.
    D. P. H. Hasselman, R. Badaliance and E. P. Chen, in “Thermal Fatigue of Materials and Components” (Proceedings of the Symposium, New Orleans, 1975), (American Society for Testing and Materials, Philadelphia, 1976) p. 55.CrossRefGoogle Scholar
  4. 4.
    D. P. H. Hasselman, E. P. Chen, C. L. Ammann, J. E. Doherty and C. G. Nessler, J. Amer. Ceram. Soc. 58 [11–12] (1975) 513.CrossRefGoogle Scholar
  5. 5.
    A. M. Simonneau, “Resistance aux chocs thermiques et à la fatigue thermique de céramiques thermomécaniques. Influence des conditions expérimentales.” (Thèse de doctorat, université de Limoges, 1989) p. 134.Google Scholar
  6. 6.
    J. P. Singh, K. Niihara and D. P. H. Hasselman, in “Thermo-mechanical and Thermal Behavior of High Temperature Structural Materials”, (Interim Report to Office of Naval Research, 1981) Ch. 4.Google Scholar
  7. 7.
    N. Kamiya and O. Kamigaito, J. Mater. Sci. 14 (1979) 573.CrossRefGoogle Scholar
  8. 8.
    Idem., ibid. 24 (1989) 246.Google Scholar
  9. 9.
    R. Badaliance, D. A. Krohn and D. P. H. HasselMan, J. Amer. Ceram. Soc. 57 [10] (1974) 432.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • F. Sudreau
    • 1
  • C. Olagnon
    • 1
  • G. Fantozzi
    • 1
  • O. Leclercq
    • 2
  1. 1.GEMPPM-UA CNRS 341, Bât. 502INSAVilleurbanne CédexFrance
  2. 2.EMA-EDF Les RenardièresMoret-sur-LoingFrance

Personalised recommendations