Advertisement

Journal of Materials Science

, Volume 27, Issue 20, pp 5497–5503 | Cite as

Non-ohmic I–V behaviour of random metal-insulator composites near their percolation threshold

  • In-Gann Chen
  • W. B. Johnson
Papers

Abstract

A large increase in electrical conductivity has been observed when a direct current voltage is applied to random metal-insulator composites near their percolation threshold. This reversible non-ohmic I-V behaviour, which is similar to that observed in zinc oxide varistors, has been studied in three metal/insulator systems including silver particles in a matrix of potassium chloride, and two different systems of nickel particles in a matrix of polypropylene. These composites have all been prepared by mechanically mixing metal particles with an insulator host in predetermined volume fractions. A physical model with a semi-phenomenological equation has been proposed to describe this non-ohmic I–V behaviour. The non-ohmic effect is postulated to arise from a localized reversible dielectric breakdown between narrowly separated metal clusters in the metal/insulator composite.

Keywords

Zinc Nickel Electrical Conductivity Polypropylene Physical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Branly, Compt. Rend. Acad. Sci. Paris 111 (1890) 785.Google Scholar
  2. 2.
    R. Gabillard and L. Raczy, ibid. 252 (1961) 2845.Google Scholar
  3. 3.
    H. W. Meyer, “A History of Electricity and Magnetism” (MIT Press, Cambridge, MA, 1971) pp. 200.Google Scholar
  4. 4.
    Ping Sheng and B. Abeles, Phys. Rev. Lett. 28 (1972) 34.CrossRefGoogle Scholar
  5. 5.
    B. Abeles, Ping Sheng, M. D. Coutts and Y. Arie, Adv. Phys. 24 (1975) 407.CrossRefGoogle Scholar
  6. 6.
    F. F. T. de Araujo and H. M. Rosenberg, J. Phys. D Appl. Phys. 9 (1976) 1025.CrossRefGoogle Scholar
  7. 7.
    S. H. Kwan, F. G. Shin and W. L. Tsui, J. Mater. Sci. 15 (1980) 2978.CrossRefGoogle Scholar
  8. 8.
    H. Sodolski, R. Zielinski, T. Slupkowski and B. Jachym, Phys. Status Solidi (a) 32 (1975) 603.CrossRefGoogle Scholar
  9. 9.
    L. K. H. van Beek and B. I. C. F. van Pul, J. Appl. Polym. Sci. 6 (1962) 651.CrossRefGoogle Scholar
  10. 10.
    R. M. Hill and A. K. Jonscher, J. Non-Cryst. Solids 32 (1979) 53.CrossRefGoogle Scholar
  11. 11.
    J. P. Reboul and G. Moussalli, Int. J. Polym. Mater. 5 (1976) 133.CrossRefGoogle Scholar
  12. 12.
    In-Gann Chen and W. B. Johnson, J. Mater. Sci. 21 (1986) 3162.CrossRefGoogle Scholar
  13. 13.
    Idem, ibid. 26 (1991) 1565.CrossRefGoogle Scholar
  14. 14.
    D. M. Grannan, J. C. Garland and D. B. Tanner, Phys. Rev. Lett. 46 (1981) 375.CrossRefGoogle Scholar
  15. 15.
    In-Gann Chen, PhD thesis, The Ohio State University (1987).Google Scholar
  16. 16.
    E. Kreyszig, “Advanced Engineering Mathematics”, 3rd Edn (Wiley, New York, 1972) pp. 735.Google Scholar
  17. 17.
    K. W. Yu and D. Stroud, private communication (1985).Google Scholar
  18. 18.
    M. S. Caceci and W. P. Cacheris, BYTE 5 (1984) 340.Google Scholar
  19. 19.
    R. A. Anderson and S. R. Kurtz, MRS Bull. (July/August) (1986) 8.Google Scholar
  20. 20.
    J. P. Hirth, private communication (1987).Google Scholar
  21. 21.
    E. A. Owen, Contemp. Phys. 11 (1970) 257.CrossRefGoogle Scholar
  22. 22.
    L. M. Levinson and H. R. Philipp, Bull. Amer. Ceram. Soc. 65 (1986) 639.Google Scholar
  23. 23.
    G. D. Mahan, L. M. Levinson and H. R. Philipp, J. Appl. Phys. 50 (1979) 2799.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • In-Gann Chen
    • 1
  • W. B. Johnson
    • 1
  1. 1.Department of Materials ScienceThe Ohio State UniversityColumbusUSA

Personalised recommendations