Journal of Materials Science

, Volume 27, Issue 16, pp 4523–4530 | Cite as

Pulsed laser treatment of plasma-sprayed thermal barrier coatings: effect of pulse duration and energy input

  • I. Smurov
  • A. Uglov
  • Yu. Krivonogov
  • S. Sturlese
  • C. Bartuli


Pulsed laser treatments of plasma-sprayed thermal barrier coatings can provide good corrosion resistance of protected components without impairing thermal fatigue resistance of the ceramic layers. Laser treatments are performed over a wide range of pulse durations and energy inputs, and their effects on microstructure, crystalline grain size and chemical composition of the remelted thin upper layer are investigated. Particular attention is given to macro and microcracking originating on the surface, gas bubble motion inside the melted layer and consequent surface crater formation. Density, shape, dimension and distribution of craters in the laser-irradiated zone are correlated with pulse duration and energy input of the laser beam. A numerical simulation of temperature distributions and heat phenomena originating in the ceramic coating during laser irradiation is presented, in order to explain the influence of laser characteristics on the quality of the coating surface.


Corrosion Resistance Pulse Duration Energy Input Ceramic Coating Thermal Fatigue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. J. Brindley and R. A. Miller, Adv. Mater. Proc. 8 (1989) 29.Google Scholar
  2. 2.
    J. W. Fairbanks and R. J. Hecht, Mater. Sci. Engng 88 (1987) 321.CrossRefGoogle Scholar
  3. 3.
    T. N. Rhys-Jones and F. C. Toriz, High Temp. Tech. 7 (2) (1989) 73.CrossRefGoogle Scholar
  4. 4.
    M. H. Van De Voorde, M. G. Hocking and V. Vasantasree, High Temp. Mater. Proc. 7 (2–3) (1986) 107.CrossRefGoogle Scholar
  5. 5.
    A. S. Grot and J. K. Martyn, Ceram. Bull. 60 (8) (1981) 807.Google Scholar
  6. 6.
    B. C. Wu, E. Chang, S. F. Chang and D. Tu, J. Amer. Ceram. Soc. 72 (2) (1989) 212.CrossRefGoogle Scholar
  7. 7.
    A. Bennet, Mater. Sci. Tech. 2 (1986) 257.CrossRefGoogle Scholar
  8. 8.
    J. H. Zaat, Ann. Rev. Mater. Sci. 13 (1983) 9.CrossRefGoogle Scholar
  9. 9.
    S. Sturlese, R. Dal Maschio, C. Bartuli, N. Zacchetti and M. Berardo, in “High Performance Films and Coatings”, edited by P. Vincenzini (Elsevier Science, B.V., 1991) p. 353.Google Scholar
  10. 10.
    K. D. Sheffler, R. A. Graziani and G. C. Sinko, NASA CR-167964 (1982).Google Scholar
  11. 11.
    R. A. Miller and C. E. Lowell, Thin Solid Films 95 (1982) 265.CrossRefGoogle Scholar
  12. 12.
    R. Sivakumar and M. P. Srivatava, Oxid. Metals. 20 (3–4) (1983) 67.CrossRefGoogle Scholar
  13. 13.
    F. S. Galasso and V. Vettry, Ceram. Bull 62 (2) (1983) 253.Google Scholar
  14. 14.
    I. Zaplatinsky, Thin Solid Films 95 (3) (1982) 275.CrossRefGoogle Scholar
  15. 15.
    T. Arahari, T. Suzuki, N. Iwamoto, N. Umesaki, Adv. Ceram. 24A (1988) 549.Google Scholar
  16. 16.
    A. Adamski and R. McPherson, in “Advances in Thermal Spraying” (Pergamon, Oxford, 1986), p. 555.CrossRefGoogle Scholar
  17. 17.
    M. Havrda, K. Volenik, J. Wagner and P. Mraz, “, p. 569.CrossRefGoogle Scholar
  18. 18.
    N. Iwamoto, N. Umesaki and S. Endo, ibid. p. 563.CrossRefGoogle Scholar
  19. 19.
    R. A. Miller and C. C. Berndt, Thin Solid Films 119 (1984) 195.CrossRefGoogle Scholar
  20. 20.
    R. Sivakumar and B. L. Mordike, Surf. Engng 4 (2) (1988) 127.CrossRefGoogle Scholar
  21. 21.
    A. A. Uglov, V. A. Grebennikov, I. Yu. Smurov and V. G. Panaetov, Phis. Khim. Obratotki Mater. 3 (1988) 125.Google Scholar
  22. 22.
    A. A. Uglov, I. Yu. Smurov, A. M. Lashin and A. G. Guskov, “Heat processes of pulse laser treatments of metals” (Nauka, Moskow) in press.Google Scholar
  23. 23.
    N. Rykalin, A. Uglov, I. Zuev and A. Kokora, “Laser and electron beam materials processing” (Mir, Moscow, 1988).Google Scholar
  24. 24.
    A. Lashin, I. Smurov, A. Uglov, P. Matteazzi and V. Tagliaferri, Heat Tech. 7 (2) (1989) 60.Google Scholar
  25. 25.
    I. Yu. Smurov and A. M. Lashin, in “Physico-chemical processes in materials treatment by concentrated energy flows” (Nauka, Moscow 1989) p. 160.Google Scholar
  26. 26.
    L. Pawlowski, D. Lombard and P. Fauchais, J. Vac. Sci. Technol. A3 (1985) 2494.CrossRefGoogle Scholar
  27. 27.
    V. P. Ageev, S. T. Burdin and I. N. Goncharov, Sci. Technol. Rev. Radiotekhnika 31 (1983) 160.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • I. Smurov
    • 1
  • A. Uglov
    • 1
  • Yu. Krivonogov
    • 1
  • S. Sturlese
    • 2
  • C. Bartuli
    • 2
  1. 1.Baikov Institute of MetallurgyUSSR Academy of ScienceMoscowRussia
  2. 2.Centro Sviluppo Materiali S.p.ARomaItaly

Personalised recommendations