Advertisement

Journal of Materials Science

, Volume 27, Issue 16, pp 4495–4500 | Cite as

Crystal structure of synthesized CuGaTe2 determined by X-ray powder diffraction using the Rietveld method

  • M. Leon
  • J. M. Merino
  • J. L. Martin De Vidales
Papers

Abstract

A full profile X-ray powder diffraction structure refinement has been carried out on a sample of synthesized CuGaTe2 using graphite monocromatized CuKα step-scan data and a profile shape of the Pearson VII type. The most satisfactory convergence was achieved at Rp = 0.0666, Rwp = 0.0884, RB = 0.0106 and RF = 0.0102. The derived structural parameters at 26.5°C are: a = 0.602348(7), c = 1.193979(2) nm and x(Te) = 0.256(6). The ratio between lattice parameters, η = c/2a = 0.9911 (0), differs from 1.0, indicating a tetragonal distortion, and non-ideal anion displacements, x(Te)≠1/4, is manifested by the existence of bond alternation of Cu-Te and Ga-Te with interatomic distances of 0.262(5) and 0.2578(5) nm, respectively. These results show a light tetrahedral deformation produced by four-fold tetrahedra of the copper cation in the CuGaTe2 chalcopyrite-type structure.

Keywords

Interatomic Distance Structure Refinement Rietveld Method Profile Shape Tetragonal Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Shay and J. H. Wernick, “Ternary Chalcopyrite semiconductors: Growth, Electronic Properties and Applications” (Pergamon, Oxford, 1974).Google Scholar
  2. 2.
    J. E. Jaffe and A. Zunger, Phys. Rev. B 27 (1983) 5176.CrossRefGoogle Scholar
  3. 3.
    Idem., ibid. 29 (1984) 1882.CrossRefGoogle Scholar
  4. 4.
    Idem., ibid. 28 (1983) 5822.CrossRefGoogle Scholar
  5. 5.
    H. Hahn, G. Frank, W. Klingler, A. Meyer and G. Storger, Z. Anorg. Chem. 271 (1953) 153.CrossRefGoogle Scholar
  6. 6.
    H. M. Rietveld, J. Appl. Crystallogr. 2 (1969) 65.CrossRefGoogle Scholar
  7. 7.
    D. B. Wiles, A. Sakthivel and R. A. Young, “User's Guide to the Program DBW3.2S for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns (Version 8804)” (School of Physics, Georgia Institute of Technologie, Atlanta, 1988).Google Scholar
  8. 8.
    J. Schneider, in “IUCr Int. Workshop on the Rietveld Method” (Peten, 1989) p. 535.Google Scholar
  9. 9.
    R. A. Young and D. B. Wiles, J. Appl. Crystallogr. 15 (1982) 430.CrossRefGoogle Scholar
  10. 10.
    J. E. Post and D. L. Bish, in “X-ray Powder Diffraction”, Vol. 20, edited by D. K. Smith and R. L. Snyder (Mineralogical Society of America, 1989) p. 277.Google Scholar
  11. 11.
    P. E. Werner, J. Appl. Crystallogr. 1 (1968) 108.CrossRefGoogle Scholar
  12. 12.
    Idem., ibid. 12 (1979) 60.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • M. Leon
    • 1
  • J. M. Merino
    • 1
  • J. L. Martin De Vidales
    • 2
  1. 1.Departamento de Física Aplicada, Facultad de Ciencias C-XIIUniversidad Autónoma de MadridMadridSpain
  2. 2.Facultad de Ciencias C-VIUniversidad Autónoma de MadridMadridSpain

Personalised recommendations