Advertisement

Journal of Materials Science

, Volume 27, Issue 16, pp 4460–4464 | Cite as

Determination of structural parameters of metallic foams from permeametry measurements

  • A. Montillet
  • J. Comiti
  • J. Legrand
Papers

Abstract

An experimental technique, permeametry, is carried out in order to determine the dynamic specific surface area and the tortuosity of three nickel foams. A capillary-type model allows calculation of these structural parameters from pressure-drop measurements. Studying pressure drops of two different flow configurations also allows quantification of a third parameter due to the anisotropy of the material structure. The values of the parameters determined throughout this work are compared with those obtained in previous works using different experimental methods.

Keywords

Polymer Nickel Anisotropy Foam Specific Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

A

experimental coefficient defined by Equation 3 (Pa sm−2)

Avd

dynamic specific surface area, related to volume of solid (m−1)

Ave

specific surface area, related to volume of porous medium (m−1)

B

experimental coefficient defined by Equation 4 (Pas2m−3)

Cr

precision criterion

D

hydraulic diameter of the cell (m)

d

equivalent pore diameter (m)

f

friction factor

H

bed height or thickness of porous material (m)

J

coefficient defined by Equation 8 (m−1)

K

coefficient defined by Equation 9 (m−2)

l

pore length (m)

mre

mean relative error

n+1

number of pressure taps

ΔP

pressure drop (Pa)

R

anisotropy factor or shape anisotropy ratio

Re

superficial Reynolds number, Re = ρ Uod/u

Rei

interstitial Reynolds number, Re i = ρ Uod/(εμ)

T

tortuosity

Uo

superficial velocity (m s−1)

ε

porosity

μ

dynamic viscosity (Pa s)

ρ

fluid density (kg m−3)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Lowell and J. E. Shields, “Powder Surface Area and Porosity” (Chapman and Hall, London, 1984).CrossRefGoogle Scholar
  2. 2.
    J. Olek, M. D. Cohen and C. Lobo, ACI. Mater. J. 87 (1990) 473.Google Scholar
  3. 3.
    A. Dybbs and R. V. Edwards, in “Fundamentals of Transport Phenomena in Porous Media”, edited by J. Bear and Y. Corapcioglu (Martinus Nishoff, 1984) p. 199.Google Scholar
  4. 4.
    J. Comiti and M. Renaud, Chem. Engng Sci. 44 (1989) 1539.CrossRefGoogle Scholar
  5. 5.
    S. Langlois, thesis, University of Rennes 1, France (1988).Google Scholar
  6. 6.
    A. T. Huber and L. J. Gibson, J. Mater. Sci. 23 (1988) 3031.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • A. Montillet
    • 1
  • J. Comiti
    • 1
  • J. Legrand
    • 1
  1. 1.Laboratoire de Génie des ProcédésInstitut Universitaire de TechnologieSaint-Nazaire CédexFrance

Personalised recommendations