Journal of Materials Science

, Volume 27, Issue 16, pp 4429–4438 | Cite as

Mechanical properties of ultra-fine grained zirconia ceramics

  • G. S. A. M. Theunissen
  • J. S. Bouma
  • A. J. A. Winnubst
  • A. J. Burggraaf


The mechanical properties of tetragonal zirconia (TZP) materials doped with Y, Ce or Ti were studied as a function of temperature and grain size. Fine grained Y-TZP (grain size < 0.3 μm) shows values for fracture toughness and strength at room temperature, which are comparable with the coarse grained transformation toughened materials, despite lacking transformation toughening. The morphology of the fracture surface points to crack deflection as the most important toughening mechanism. At 800 °C fracture toughness and strength are higher than in coarse grained Y-TZP materials. Doping Y-TZP with Ce or Ti results in a similar trend in mechanical properties, for fine grained material, as for the Y-TZP materials.


Polymer Grain Size Mechanical Property Zirconia Fracture Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. F. Lange, J. Mater. Sci. 17 (1982) 240.CrossRefGoogle Scholar
  2. 2.
    K. Tsukuma and K. Ueda, J. Amer. Ceram. Soc. 68 (1985) C-56.Google Scholar
  3. 3.
    T. Masaki and K. Sinjo, Ceram. Int. 13 (1987) 109.CrossRefGoogle Scholar
  4. 4.
    A. P. Druschitz and J. G. Schroth, J. Amer. Ceram. Soc. 72 (1989) 1591.CrossRefGoogle Scholar
  5. 5.
    P. J. Whalen, F. Reidinger and R. F. Antrim, ibid. 72 (1989) 319.CrossRefGoogle Scholar
  6. 6.
    K. Haberko and R. Pampuch, Ceram. Int. 9 (1983) 8.CrossRefGoogle Scholar
  7. 7.
    P. Duran, P. Recio, J. R. Jurado, C. Pascual, F. Capel and C. Moure, J. Mater. Sci. 24 (1989) 708.CrossRefGoogle Scholar
  8. 8.
    J. Wang, M. Rainforth and R. Stevens, J. Br. Ceram. Trans. 88 (1989) 1.Google Scholar
  9. 9.
    H. Y. Lu and S. Y. Chen, J. Amer. Ceram. Soc. 70 (1987) 537.CrossRefGoogle Scholar
  10. 10.
    T. Sato, S. Ohtaki, T. Endo and M. Shimada, Int. J. High. Techn. Ceram. 2 (1986) 167.CrossRefGoogle Scholar
  11. 11.
    A. G. Evans, Mater. Sci. Eng. A105/106 (1988) 65.CrossRefGoogle Scholar
  12. 12.
    F. F. Lange, J. Mater. Soc. 17 (1982) 235.CrossRefGoogle Scholar
  13. 13.
    R. M. McMeeking and A. G. Evans, J. Amer. Ceram. Soc. 65 (1982) 242.CrossRefGoogle Scholar
  14. 14.
    K. Tsukuma, Amer. Ceram. Soc. Bull. 65 (1986) 1386.Google Scholar
  15. 15.
    F. F. Lange, J. Mater. Soc. 17 (1982) 235.CrossRefGoogle Scholar
  16. 16.
    D. Michel, L. Mazerolles and M. Perez y Yorba, J. Mater. Soc. 18 (1983) 2618.CrossRefGoogle Scholar
  17. 17.
    R. P. Ingel, D. Lewis, B. A. Bender and R. W. Rice, J. Amer. Ceram. Soc. 65 (1982) C-150.Google Scholar
  18. 18.
    J. S. Bouma, G. S. A. M. Theunissen, A. J. A. Winnubst and A. J. Burggraaf, in Materials Science Monographs Vol. 68, Ceramics Today-Tomorrow's Ceramics, edited by P. Vincenzini (Elsevier Science Publishers, London, 1991) pp. 1601–1611.Google Scholar
  19. 19.
    A. J. A. Winnubst and A. J. Burggraaf, in “Advances in Ceramics, Vol. 24A: Science and Technology of Zirconia IIIrd, edited by S. Somiya, N. Yamamoto and H. Yanagida (The American Ceramic Society, Ohio, 1988) p. 39.Google Scholar
  20. 20.
    G. S. A. M. Theunissen, A. J. A. Winnubst and A. J. Burggraaf, J. Eur. Ceram. Soc. in press.Google Scholar
  21. 21.
    J.-G. Duh, H.-S. Dai and B.-S. Chiou, ibid. 71 (1988) 813.CrossRefGoogle Scholar
  22. 22.
    B. Bastide, P. Canale and P. Odier, J. Eur. Ceram. Soc. 5 (1989) 289.CrossRefGoogle Scholar
  23. 23.
    T. Sato, T. Fukishima, T. Endo and M. Shimada, in “Science of Ceramics 14”, edited by D. Taylor (The Institute of Ceramics, UK, 1988) p. 1407.Google Scholar
  24. 24.
    W. F. M. Groot Zevert, A. J. A. Winnubst, G. S. A. M. Theunissen and A. J. Burggraaf, J. Mater. Sci. 25 (1990) 3449.CrossRefGoogle Scholar
  25. 25.
    H. J. Oel, Ber. Dtsch. Keram. Ges. 43 (1966) 624.Google Scholar
  26. 26.
    J. D. Sullivan and P. H. Lauzon, J. Mater. Sci. Lett. 5 (1986) 1245.CrossRefGoogle Scholar
  27. 27.
    G. de With, ibid. 16 (1981) 1702.CrossRefGoogle Scholar
  28. 28.
    V. G. Keramidas and W. B. White, J. Amer. Ceram. Soc. 57 (1974) 22.CrossRefGoogle Scholar
  29. 29.
    M. Ishigame and T. Sakurai, ibid. 60 (1977) 367.CrossRefGoogle Scholar
  30. 30.
    D. R. Clarke and F. Adar, ibid. 65 (1982) 284.CrossRefGoogle Scholar
  31. 31.
    A. J. A. Winnubst, K. Keizer and A. J. Burggraaf, J. Mater. Sci. 18 (1983) 1958.CrossRefGoogle Scholar
  32. 32.
    A. V. Virkar and R. L. K. Matsumoto, J. Amer. Ceram. Soc. 69 (1986) C-224.CrossRefGoogle Scholar
  33. 33.
    G. V. Srinivasan, J.-F. Jue, S.-Y. Kuo and A. V. Virkar, ibid. 72 (1989) 2098.CrossRefGoogle Scholar
  34. 34.
    B.-S. Li, J.-S. Cherng, K. J. Bowman and I.-W. Chen, ibid. 71 (1988) C-362.CrossRefGoogle Scholar
  35. 35.
    F. Reidinger and P. J. Whalen, Mater. Res. Soc. Symp. Proc. 78 (1987) 25.CrossRefGoogle Scholar
  36. 36.
    K. T. Faber and A. G. Evans, Acta Metall. 31 (1983) 577.CrossRefGoogle Scholar
  37. 37.
    K.-H. Heussner and N. Claussen, J. Eur. Ceram. Soc. 5 (1989) 193.CrossRefGoogle Scholar
  38. 38.
    K. T. Faber and A. G. Evans, Acta Metall. 31 (1983) 565.CrossRefGoogle Scholar
  39. 39.
    A. J. Burggraaf, K. Keizer and B. A. van Hassel, in “Surfaces and interfaces of ceramic materials”, edited by L.-C. Dufour et al. (Kluwer Academic Publishers, Deventer, 1989) p. 705.CrossRefGoogle Scholar
  40. 40.
    G. S. A. M. Theunissen, PhD Thesis, University of Twente, The Netherlands (1991).Google Scholar
  41. 41.
    G. S. A. M. Theunissen, A. J. A. Winnubst and A. J. Burggraaf, J. Eur. Ceram. Soc., in press.Google Scholar
  42. 42.
    L. R. F. Rose and M. V. Swain, Acta Metall. 36 (1988) 955.CrossRefGoogle Scholar
  43. 43.
    C.-Y. Yu and D. K. Shetty, J. Amer. Ceram. Soc. 72 (1989) 921.CrossRefGoogle Scholar
  44. 44.
    P. E. Reyes-Morel and I-W. Chen, ibid. 71 (1988) 343.CrossRefGoogle Scholar
  45. 45.
    R. H. J. Hannink and M. V. Swain, ibid. 72 (1989) 90.CrossRefGoogle Scholar
  46. 46.
    D.-J. Kim, ibid. 73 (1990) 115.CrossRefGoogle Scholar
  47. 47.
    M. Yoshimura, Bull. Amer. Ceram. Soc. 67 (1988) 1950.Google Scholar
  48. 48.
    C. A. Andersson and T. K. Gupta, in “Advances in Ceramics, Vol. 3: Science and Technology of Zirconia I”, edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Ohio, 1981) p. 184.Google Scholar
  49. 49.
    V. Lanteri, A. H. Heuer and T. E. Mitchell, in “Advances in Ceramics, Vol. 12, Science and Technology of Zirconia II”, edited by N. Claussen, M. Rühle and A. H. Heuer (The American Ceramic Society, Ohio, 1984) p. 118.Google Scholar
  50. 50.
    C. A. Leach, J. Mater. Sci. Lett. 6 (1987) 303.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • G. S. A. M. Theunissen
    • 1
  • J. S. Bouma
    • 1
  • A. J. A. Winnubst
    • 1
  • A. J. Burggraaf
    • 1
  1. 1.Faculty of Chemical Technology, Laboratory for Inorganic Chemistry, Materials Science and CatalysisUniversity of TwenteAE EnschedeThe Netherlands

Personalised recommendations