Journal of Materials Science

, Volume 27, Issue 16, pp 4421–4428 | Cite as

Mechanical behaviour and failure phenomenon of an in situ toughened silicon nitride

  • J. A. Salem
  • S. R. Choi
  • M. R. Freedman
  • M. G. Jenkins


The Weibull modulus, fracture toughness and crack-growth resistance of an in situ toughened, silicon nitride material used to manufacture a turbine combustor were determined from room temperature to 1371 °C. The material exhibited an elongated grain structure that resulted in improved fracture toughness, non-linear crack-growth resistance, and good elevated-temperature strength. However, low-temperature strength was limited by grains of excessive length (30–100 μm). These excessively long grains were surrounded by regions rich in sintering additives.


Polymer Silicon Nitride Fracture Toughness Mechanical Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Salem, J. Manderscheid, M. Freedman and J. Gyekenyesi, J. Gas Turbines Engng, in press.Google Scholar
  2. 2.
    J. P. Gyekenyesi, J. Engng Gas Turbine Power 108 (1986) 540.CrossRefGoogle Scholar
  3. 3.
    K. N. Siebein and W. M. Lovington, in “Microstructural Science”, Vol. 16, “Metallography of Advance Materials”, edited by H. J. Cialone (International Metallographic Society, Columbus, OH, 1988) p. 319.Google Scholar
  4. 4.
    “Young's Modulus, Shear Modulus, and Poisson's Ratio for Ceramic Whitewares by Resonance”, ASTM Standard Test Method C848-88 (American Society for Testing and Materials, Philadelphia, PA, 1988).Google Scholar
  5. 5.
    T. Nose and T. Fujii, J. Amer. Ceram. Soc. 71 (1988) 328.CrossRefGoogle Scholar
  6. 6.
    D. Munz, R. T. Bubsey and J. L. Shannon Jr, ibid. 63 (1980) 300.CrossRefGoogle Scholar
  7. 7.
    M. J. Jenkins, J. A. Salem and S. G. Seshardri, J. Compos. Mater. 23 (1989) 77.CrossRefGoogle Scholar
  8. 8.
    K. F. Krause, J. Amer. Ceram. Soc. 71 (1988) 338.CrossRefGoogle Scholar
  9. 9.
    K. Jakus, J. E. Ritter Jr, T. Service and D. Sonderman, ibid. 64 (1981) C-174.CrossRefGoogle Scholar
  10. 10.
    S. A. Szatmary, J. P. Gyekenyesi and N. N. Nemeth, NASA Technical Memorandum 103247 (1990).Google Scholar
  11. 11.
    J. A. Salem, NASA Technical Memorandum 102 423 (1990).Google Scholar
  12. 12.
    P. Chantikul, G. R. Anstis, B. R. Lawn and D. B. Marshall, J. Amer. Ceram. Soc. 64 (1981) 539.CrossRefGoogle Scholar
  13. 13.
    S. R. Choi and J. Salem, “Strength and Fracture Toughness Properties of Whisker Reinforced Silicon Nitride Matrix Composite and Monolithic Silicon Nitride”, edited by Michael D. Sacks, Presented at the Symposium on Composites sponsored by American Ceramics Society, Orlando, FL, 12–15 November 1990 (The American Ceramic Society, Inc., Westerville, OH, 1991).Google Scholar
  14. 14.
    J. E. Ritter, S. R. Choi, K. Jakus, P. J. Whalen and R. G. Rateick, J. Mater. Sci. 26 (1991) 5543.CrossRefGoogle Scholar
  15. 15.
    C. W. Li and Y. Yamanis, Ceram. Engng Soc. Proc. 10 (1989) 632.CrossRefGoogle Scholar
  16. 16.
    K. Kendall, N. M. Ashford, S. R. Tan and J. D. Birchall, J. Mater. Res. 1 (1986) 120.CrossRefGoogle Scholar
  17. 17.
    R. F. Cook and D. R. Clarke, Acta Metall. 36 (1988) 555.CrossRefGoogle Scholar
  18. 18.
    D. K. Shetty and J. S. Wang, J. Amer. Ceram. Soc. 72 (1988) 1158.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • J. A. Salem
    • 1
  • S. R. Choi
    • 1
  • M. R. Freedman
    • 1
  • M. G. Jenkins
    • 2
  1. 1.NASA Lewis Research CenterClevelandUSA
  2. 2.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations