Advertisement

Journal of Materials Science

, Volume 27, Issue 16, pp 4406–4414 | Cite as

Synthesis of TiC via polymeric titanates: the preparation of fibres and thin films

  • K. Thorne
  • S. J. Ting
  • C. J. Chu
  • J. D. Mackenzie
  • T. D. Getman
  • M. F. Hawthorne
Papers

Abstract

Polymerization of titanium isopropoxide via its transesterification with o-xylene-α,α′-diacetate enables the formation of a polymeric titanate that can be thermally converted into carbon-deficient TiC after inert atmosphere pyrolysis at 800 °C. The physical and rheological properties of this polymeric titanate allow for the production of crystalline TiC fibres and thin films. The synthesis of this polymeric precursor and the structural transformations leading to the formation of TiC are discussed.

Keywords

Polymer Atmosphere Titanium Thin Film Titanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. W. Richerson, “Modern Ceramic Engineering” (Marcel Dekker, New York, 1982) pp. 72, 93.Google Scholar
  2. 2.
    V. S. Neshpor, V. P. Nikitin and V. I. Novikov, Izvest. Akad. Nauk SSSR 7 (1971) 1643.Google Scholar
  3. 3.
    G. S. Girolami, J. A. Jensen and D. M. Pollina, J. Amer. Chem. Soc. 109 (1987) 1579.CrossRefGoogle Scholar
  4. 4.
    E. K. Storm, “The Refractory Carbides” (Academic Press, New York, 1967) Ch. 1.Google Scholar
  5. 5.
    S. Yajima, Y. Hasegawaw, K. Okamura and T. Matsuzawa, Nature 273 (1978) 525.CrossRefGoogle Scholar
  6. 6.
    K. J. Wynne and R. W. Rice, Ann. Rev. Mater. Sci. 14 (1984) 297.CrossRefGoogle Scholar
  7. 7.
    R. W. West, “Ultrastructure Processing of Ceramics, Glasses and Composites”, edited by L. L. Hench and D. R. Ulrich (Wiley, New York, 1984) p. 19.Google Scholar
  8. 8.
    R. R. Willis, R. A. Markle and S. P. Mukherjee, Amer. Ceram. Soc. Bull. 62 (1983) 904.Google Scholar
  9. 9.
    S. J. Ting, C. J. Chu, E. Liimatta, J. D. Mackenzie, T. Getman and M. F. Hawthorne, in “Better Ceramics Through Chemistry IV”, MRS Conference Proceedings, 16–20 April 1990, San Francisco, CA, to be published.Google Scholar
  10. 10.
    D. C. Bradley, R. C. Mehrotra and D. P. Gaur, “Metal Alkoxides” (Academic Press, New York, 1978).Google Scholar
  11. 11.
    D. C. Bradley, Adv. Inorg. Chem. Radiochem. 15 (1972) 259.CrossRefGoogle Scholar
  12. 12.
    R. F. Nystrom and W. G. Brown, J. Amer. Chem. Soc. 69 (1947) 1198.Google Scholar
  13. 13.
    T. W. Solomans, “Organic Chemistry” (Wiley, New York, 1976).Google Scholar
  14. 14.
    E. D. Becker, “High Resolution NMR” (Academic Press, San Diego, 1980).Google Scholar
  15. 15.
    B. D. Cullity, “Elements of X-ray Diffraction” (Addison-Wesley, Menlo Park, CA, 1978) p. 99.Google Scholar
  16. 16.
    B. Uhrenius, CALPHAD 8 (2) (1984) 101.CrossRefGoogle Scholar
  17. 17.
    W. D. Kingery, “Introduction to Ceramics” (Wiley, New York, 1976).Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • K. Thorne
    • 1
  • S. J. Ting
    • 1
  • C. J. Chu
    • 1
  • J. D. Mackenzie
    • 1
  • T. D. Getman
    • 1
    • 2
  • M. F. Hawthorne
    • 1
    • 2
  1. 1.Department of Materials Science and EngineeringUniversity College of Los AngelesLos AngelesUSA
  2. 2.Department of Chemistry and BiochemistryUniversity College of Los AngelesLos AngelesUSA

Personalised recommendations