Advertisement

Journal of Materials Science

, Volume 27, Issue 16, pp 4389–4392 | Cite as

Preparation and characterization of Zn3P2-Cd3P2 solid solutions

  • D. R. Rao
  • A. Nayak
Papers

Abstract

Solid solutions of Zn3P2-Cd3P2 systems of the type (ZnxCd1−x)3P2 have been prepared by direct reaction of the constituent elements (Zn, Cd, P) for values of x equal to 0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0. X-ray diffraction data indicate that all the systems crystallize in tetragonal (α) phase only, exhibiting preferred orientation along the (220) and (224) directions. The lattice parameters, a and c, and the interplanar spacing, d, vary linearly with x, obeying Vegard's law. The systems show minimum conductivity at room temperature for composition corresponding to x values in the range 0.4–0.6. Electrical conductivity for all systems is measured in the temperature range 100–450 K. In view of the estimated (low) values of the activation energy the conduction process in the different temperature regions has been attributed to the presence of shallow trapping levels in the systems.

Keywords

Polymer Activation Energy Electrical Conductivity Solid Solution Temperature Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Catalano, V. Dalal, E. A. Fagen, R. B. Hall, J. V. Masi, J. D. Meakin, G. Warfield and A. M. Barnet, in “Proceedings of Photovoltaic Solar Energy Conference”, Luxembourg, 27–30 September 1977, edited by R. Van Overstraeten and W. Palz (Reidel, Dordrecht, Holland, 1978) p. 644.Google Scholar
  2. 2.
    A. Möller, U. Elrod, P. Munz, J. Honigschmidt, C. Clemen and E. Bucher, in “Proceedings of the International Conference on the Physics of Semiconductors”, Edinburgh, edited by B. L. H. Wilson, Institute of Physics Conference Series No. 43 (Institute of Physics, London, 1978) p. 825.Google Scholar
  3. 3.
    S. G. Bishop, W. J. Moore and E. M. Swiggard, Appl. Phys. Lett. 16 (1970) 459.CrossRefGoogle Scholar
  4. 4.
    E. A. Fagen, J. Appl. Phys. 50 (1979) 6505.CrossRefGoogle Scholar
  5. 5.
    K. R. Murali, PhD thesis, Indian Institute of Technology, Kharagpur (1980).Google Scholar
  6. 6.
    F. C. Wang, R. H. Bube and R. S. Feigelson, J. Crystal Growth 55 (1981) 268.CrossRefGoogle Scholar
  7. 7.
    M. Bhusan and A. Catalano, Appl. Phys. Lett. 38 (1) (1981) 39.CrossRefGoogle Scholar
  8. 8.
    R. Juza and K. Bär, Z. Anorg. Allg. Chem. 283 (1956) 230.CrossRefGoogle Scholar
  9. 9.
    K. Masumoto, S. Isomura and K. Sasaki, Phys. Status Solidi (a) 6 (1971) 515.CrossRefGoogle Scholar
  10. 10.
    ASTM X-Ray “Powder Diffraction File”, Sets 1–5, 20–25, Inorganic Volume, PD IS-5i RD & 25i RD. File nos. 22–1021 (Zn3P2) & 2–1182 (Cd3P2), 1974, edited by L. G. Berry (American Society for Testing and Materials, Philadelphia, Pennsylvania).Google Scholar
  11. 11.
    J. Berak and Z. Pruchnik, Roczniki Chemii Ann. Soc. Chim. Polon. 45 (1971) 1425.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • D. R. Rao
    • 1
  • A. Nayak
    • 1
  1. 1.Materials Science CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations