Advertisement

Journal of Materials Science

, Volume 27, Issue 16, pp 4355–4360 | Cite as

Chemically deposited n-CdSe thin film photo-electrochemical cells: effects of Zn2+-modification

  • K. C. Mandal
  • O. Savadogo
Papers

Abstract

The photoelectrochemical solar cell properties of chemically deposited n-CdSe films were studied before and after Zn2+ surface modification. It was shown that the surface properties underwent conceivable changes after Zn2+ treatment. The current-voltage characteristics in the dark showed a significant decrease in reverse saturation current density, J0, from 5.4×10−7 to 1.2×10−9 A cm−2 and in ideality factor, n, from 2.46 to 1.27. Under AM1 illumination, other parameters have been found to be considerably enchanced, e.g. the open-circuit photovoltage, Voc, increased from 0.53 to 0.85 V with respect to SCE; the short-circuit photocurrent density, Jsc, from 2.62 to 8.35 mA cm−2; fill factor from 0.38 to 0.62 and the minority carrier diffusion length, Lp, from 0.16 to 0.22 μm. X-ray photoelectron spectroscopic data on the Zn2+-modified CdSe showed the formation of metallic Zn islets and a thin layer of SeO2 on the surface. All these important improvements of the CdSe PEC properties may be attributed to the redistribution of active interface states within the band gap due to strong interaction of the electrodepositive Zn2+ ions. Support for these observations were obtained by sub-band gap response studies, contact potential difference measurements in N2 ambient and the estimation of the surface recombination velocities before and after modification.

Keywords

SeO2 Photocurrent Density Contact Potential Difference Surface Recombination Velocity Saturation Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. Parkinson, A. Heller and B. Miller, J. Electrochem. Soc. 126 (1979) 954.CrossRefGoogle Scholar
  2. 2.
    A. Heller, Accts. Chem. Res. 14 (1981) 154.CrossRefGoogle Scholar
  3. 3.
    A. Heller and R. G. Vadimsky, Phys. Rev. Lett. 46 (1981) 1153.CrossRefGoogle Scholar
  4. 4.
    B. J. Tufts, I. L. Abrahams, P. G. Santangelo, G. N. Ryba, L. G. Casagrande and N. S. Lewis, Nature 326 (1987) 861.CrossRefGoogle Scholar
  5. 5.
    O. Savadogo, Can. J. Chem. 67 (1989) 382.CrossRefGoogle Scholar
  6. 6.
    K. C. Mandal, F. Ozanam and J.-N. Chazalviel, Appl. Phys. Lett. 57 (1990) 2788.CrossRefGoogle Scholar
  7. 7.
    D. N. Bose, S. Basu, K. C. Mandal and D. Mazumdar, ibid. 48 (1986) 472.CrossRefGoogle Scholar
  8. 8.
    K. C. Mandal, S. Basu and D. N. Bose, Solar Cells 18 (1986) 25.CrossRefGoogle Scholar
  9. 9.
    D. N. Bose, S. Basu and K. C. Mandal, Thin Solid Films 164 (1988) 13.CrossRefGoogle Scholar
  10. 10.
    D. N. Bose, M. S. Hegde, S. Basu and K. C. Mandal, Semicond. Sci. Technol. 4 (1989) 866.CrossRefGoogle Scholar
  11. 11.
    J. Reichman and M. A. Russak, J. Appl. Phys. 53 (1982) 708.CrossRefGoogle Scholar
  12. 12.
    G. Hodes, D. Cahen, J. Manassen and M. David, J. Electrochem. Soc. 127 (1980) 2252.CrossRefGoogle Scholar
  13. 13.
    D. Cahen, G. Hodes, J. Manassen and M. David, ibid. 12 (1980) 2752.Google Scholar
  14. 14.
    R. Tenne, Ber. Bunsenges. Phys. Chem. 85 (1981) 413.CrossRefGoogle Scholar
  15. 15.
    M. Tomkiewicz, I. Ling and W. S. Parsons, J. Electrochem. Soc. 129 (1982) 2016.CrossRefGoogle Scholar
  16. 16.
    K. C. Mandal, J. Mater. Sci. Lett. 9 (1990) 1203.CrossRefGoogle Scholar
  17. 17.
    K. C. Mandal and K. S. V. Santhanam, J. Mater. Sci. 26 (1991) 3905.CrossRefGoogle Scholar
  18. 18.
    W. Wallace, R. N. Noufi and S. K. Deb, in Proceedings of the 15th IEEE Photovoltaic Specialists Conference, Florida (1981) p. 1363.Google Scholar
  19. 19.
    G. Hodes, Nature 29 (1980) 285.Google Scholar
  20. 20.
    A. B. Ellis, S. W. Kaiser and M. S. Wrighton, J. Amer. Chem. Soc. 98 (1976) 6418.CrossRefGoogle Scholar
  21. 21.
    M. A. Russak, J. Reichman, H. Witzke, S. K. Deb and S. N. Chen, J. Electrochem. Soc. 127 (1980) 725.CrossRefGoogle Scholar
  22. 22.
    W. W. Gartner, Phys. Rev. 116 (1959) 84.CrossRefGoogle Scholar
  23. 23.
    R. S. Feigelson, A. N. Diaye, S. Yin and R. H. Bube, J. Appl. Phys. 48 (1977) 3162.CrossRefGoogle Scholar
  24. 24.
    R. J. Nelson, J. S. Williams, H. J. Leamy, B. Miller, H. C. Casey, Jr., B. A. Parkinson and A. Heller, Appl. Phys. Lett. 36 (1980) 76.CrossRefGoogle Scholar
  25. 25.
    L. Jastrzebski, J. Lagowski and H. C. Gatos, ibid. 48 (1986) 472.CrossRefGoogle Scholar
  26. 26.
    D. E. Aspnes, Surf. Sci. 132 (1983) 406.CrossRefGoogle Scholar
  27. 27.
    R. H. Wilson, L. A. Harris and M. E. Gerstner, J. Electrochem. Soc. 127 (1987) 712.Google Scholar
  28. 28.
    R. H. Kingston and S. F. Neustadtar, J. Appl. Phys. 26 (1955) 718.CrossRefGoogle Scholar
  29. 29.
    C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg, (editors) in “Handbook of X-Ray Photoelectron Spectroscopy”, (Perkin-Elmer Corporation, USA, 1977).Google Scholar
  30. 30.
    F. A. Cotton and G. Wilkinson, in “Advanced Inorganic Chemistry”, 3rd Edn, (Wiley-Interscience, New York, 1972) p. 427.Google Scholar
  31. 31.
    R. N. Noufi, P. A. Kohl, J. W. Cers, Jr., J. M. White and A. J. Bard, J. Electrochem. Soc. 126 (1979) 949.CrossRefGoogle Scholar
  32. 32.
    K. T. L. de Silva and D. Haneman, ibid. 127 (1980) 1554.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • K. C. Mandal
    • 1
  • O. Savadogo
    • 1
  1. 1.Département de métallurgie et de génie des matériauxÉcole Polytechnique de MontréalMontréalCanada

Personalised recommendations