Advertisement

Journal of Materials Science

, Volume 27, Issue 16, pp 4350–4354 | Cite as

Crystallinity of isotactic polypropylene films annealed from the quenched state

  • R. Natale
  • R. Russo
  • V. Vittoria
Papers

Abstract

Quenched isotactic polypropylene films were annealed at 130, 140 and 155 °C for 24 h. The structural organization, after annealing, was analysed by wide-angle X-ray diffractograms (WAXD), differential scanning calorimetry (DSC), density and sorption of dichloromethane vapour at low activity. The comparison of the different methods used to obtain the crystallinity shows that, even at the highest annealing temperature, the transformation of the smectic phase into the monoclinic phase, is not complete. WAXD and DSC give the amount of monoclinic phase, whereas the amorphous fraction was derived from sorption of dichloromethane vapour at low activity. From the density, it was possible to derive the residual smectic fraction in the different samples. The results indicate that, at temperatures higher than 150 °C, there is an accelerated decrease of smectic phase and an accelerated increase in the crystal dimensions and perfection.

Keywords

Polymer Differential Scanning Calorimetry Polypropylene Calorimetry Dichloromethane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Samuels, in “Structured Polymer Properties” (John Wiley, New York, 1974) Ch. 1.Google Scholar
  2. 2.
    A. Peterlin, Colloid and Polym. Sci. 265 (1987) 357.CrossRefGoogle Scholar
  3. 3.
    I. M. Ward, in “Structure and Properties of Oriented Polymers” (Applied Science Publishers Ltd, London, 1975) Ch.l.CrossRefGoogle Scholar
  4. 4.
    F. de Candia, G. Romano, R. Russo and V. Vittoria, Colloid and Polym. Sci. 265 (1987) 696.CrossRefGoogle Scholar
  5. 5.
    G. Natta, M. Peraldo and P. Corradini, Rend. Acc. Naz. Lincei 26 (1959) 14.Google Scholar
  6. 6.
    R. L. Miller, Polymer 1 (1960) 135.CrossRefGoogle Scholar
  7. 7.
    J. Grebowicz, I. F. Lau and B. Wunderlich, J. Polym. Sci. Polym. Symp. 71 (1984) 19.CrossRefGoogle Scholar
  8. 8.
    R. Zannetti, G. Celotti, A. Fichera and R. Francesconi, Makromol. Chem. 128 (1969) 137.CrossRefGoogle Scholar
  9. 9.
    A. Fichera and R. Zannetti, ibid. 176 (1975) 1885.CrossRefGoogle Scholar
  10. 10.
    C. C. Hsu, P. H. Geil, H. Miyaji and K. Asai, J. Polym. Sci. Phys. Ed. 24 (1986) 2379.CrossRefGoogle Scholar
  11. 11.
    D. T. Grubb and D. Y. Yoon, Polym. Commun. 27 (1986) 84.Google Scholar
  12. 12.
    V. Vittoria, J. Macromol. Sci. Phys. B28 (1989) 489.CrossRefGoogle Scholar
  13. 13.
    Idem, J. Polym. Sci. Phys. Ed. 24 (1986) 451.CrossRefGoogle Scholar
  14. 14.
    V. Vittoria and A. Perullo, J. Macromol. Sci. Phys. B25 (1986) 267.CrossRefGoogle Scholar
  15. 15.
    R. Russo, R. Natale and V. Vittoria, manuscript in preparation.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • R. Natale
    • 1
  • R. Russo
    • 1
  • V. Vittoria
    • 1
  1. 1.Istituto di Ricerche su Tecnologia del Polimeri CNRAcro Felice, NapoliItaly

Personalised recommendations