Advertisement

Journal of Materials Science

, Volume 27, Issue 16, pp 4333–4336 | Cite as

Role of Ba2Cu3O5 for the formation of YBa2Cu4O8 in the presence of nitric acid

  • Weir -Mirn Hurng
  • Sheng Feng Wu
Papers

Abstract

The formation mechanism of YBa2Cu4O8 in the presence of nitric acid was carefully studied by utilizing X-ray powder diffraction to monitor the reaction route. Contrary to the formation of YBa2Cu3O7-δ in which BaCuO2 was the dominant intermediate, an intermediate Ba2Cu3O5 was identified and its yield was proportional to the amount of the nitric acid present in the formation of YBa2Cu4O8. This seems to play an important role in determining the formation of the YBa2Cu4O8 phase. To confirm the existence of this intermediate, Ba2Cu3O5 was prepared from the same condition directly. Also, the structure similarity between Ba2Cu3O5 and BaCuO2 was discussed and emphasized.

Keywords

Polymer Nitric Acid Powder Diffraction Formation Mechanism Reaction Route 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. B. Bednorz and K. A. Müller, Z. Phys. B64 (1986) 189.CrossRefGoogle Scholar
  2. 2.
    P. Marsh, R. M. Fleming, M. L. Mandich, A. M. DeSantolo, J. Kwo, M. Horng and L. J. Martinez-Miranda, Nature 334 (1988) 141.CrossRefGoogle Scholar
  3. 3.
    J. Karpinski, E. Kaldis, E. Jikel, S. Rusiecki and B. Bucher, ibid. 336 (1988) 660.CrossRefGoogle Scholar
  4. 4.
    T. Miyatake, S. Gotoh, N. Koshizuka and S. Tanaka, ibid. 341 (1989) 41.CrossRefGoogle Scholar
  5. 5.
    S. Jin, T. H. Tiefel, S. Nakahara, J. E. Graebner, H. M. O'Bryan, R. A. Fastnacht and G. W. Kammlott, Appl. Phys. Lett. 56 (1990) 1287.CrossRefGoogle Scholar
  6. 6.
    R. J. Cava, J. J. Krajewski, W. F. Peck Jr ,B. BatLogg, L. W. Rupp Jr, R. M. Fleming, A. C. W. P. James and P. Marsh, Nature 338 (1989) 328.CrossRefGoogle Scholar
  7. 7.
    U. Balachandran, M. E. Biznke, G. W. Tomlins, B. W. Veal and R. B. Poeppel, Physica C 165 (1990) 335.CrossRefGoogle Scholar
  8. 8.
    S. Jin, H. M. O'Bryan, P. K. Gallagher, T. H. Tiefel, R. J. Cava, R. A. Fastnacht and G. W. Kammlott, ibid. 165 (1990) 415.CrossRefGoogle Scholar
  9. 9.
    R. G. Buckley, J. L. Tallon, D. M. Pooke and M. R. Presland, ibid. 165 (1990) 391.CrossRefGoogle Scholar
  10. 10.
    P. Fisher, J. Karpinski, E. Kaldis, E. Jikel and S. Rusiecki, Solid State Comm. 69 (1989) 531.CrossRefGoogle Scholar
  11. 11.
    D. E. Morris, J. H. Nickel, J. Y. T. Wei, N. G. Asmar, J. S. Scott, U. M. Scheven, C. T. Hultgren and A. G. Markelz, Phys. Rev. B39 (1989) 7347.CrossRefGoogle Scholar
  12. 12.
    T. Miyatake, K. Yamaguchi, T. Takata, S. Gotoh, N. Koshizuka and S. Tanaka, Physica C 160 (1989) 541.CrossRefGoogle Scholar
  13. 13.
    W.-M. Hurng, S. F. Wu, C. Y. Shei, Y. T. Huang and W. H. Lee, Appl. Phys. Lett. 57 (1990) 2025.CrossRefGoogle Scholar
  14. 14.
    J. B. Torance, Y. Tokura and A. Nazzal, Chemtronics 2 (1987) 120.Google Scholar
  15. 15.
    R. A. Laudise, L. F. Schneemeyer and R. L. Barns, J. Crystal Growth 85 (1987) 569.CrossRefGoogle Scholar
  16. 16.
    D. M. De Leeuw, C. A. H. A. Mutsaers, C. Langereis, H. C. A. Smoorenburg and P. J. Rommers, Physica C 152 (1988) 39.CrossRefGoogle Scholar
  17. 17.
    J. G. Thompson, J. D. Fitz Gerald, R. L. Withers, P. J. Barlow and J. S. Anderson, Mat. Res. Bull. 24 (1989) 505.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Weir -Mirn Hurng
    • 1
  • Sheng Feng Wu
    • 1
  1. 1.Materials Research LaboratoriesIndustrial Technology Research InstituteHsinchuTaiwan

Personalised recommendations