Advertisement

Journal of Materials Science

, Volume 27, Issue 16, pp 4329–4332 | Cite as

Morphology of molybdena fractal clusters grown by vapour-phase deposition

  • Ji -Zhong Zhang
  • Delu Liu
Papers

Abstract

Molybdena fractal clusters of various shapes were obtained experimentally in an evaporation-deposition system. The open ramified deposits grew after heating MoO3 powder at 750–900 °C for 0.5–2 h. They demonstrate two structural forms: the stack-like formation and the net-like one. Scanning electron microscopy observations revealed that the clusters consist of one of three different microstructures: needle-like whiskers, ribbon-like crystals, and fascicular crystals. Each pattern displays the microscopical anisotropy although they are of macroscopical self-similar feature. A nucleation-aggregation model is suggested to explain the non-equilibrium growth processes.

Keywords

Polymer Microstructure Microscopy Electron Microscopy Scan Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. B. Mandelbrot, in “The Fractal Geometry of Nature” (Freeman, San Francisco, 1982) p. 25.Google Scholar
  2. 2.
    L. J. Huang, J. R. Ding, H. D. Li and B. X. Liu, J. Appl. Phys. 63 (1988) 2879.CrossRefGoogle Scholar
  3. 3.
    B. X. Liu, L. J. Huang, K. Tao, C. H. Shang and H. D. Li, Phys. Rev. Lett. 59 (1987) 745.CrossRefGoogle Scholar
  4. 4.
    J. R. Ding and B. X. Liu, J. Phys.: Condens. Matter 2 (1990) 1971.Google Scholar
  5. 5.
    D. Grier, E. Ben-Jacob, R. Clarke and L. M. Sander, ibid. 56 (1986) 1264.Google Scholar
  6. 6.
    W. T. Elam, S. A. Wolf, J. Sprague, D. U. Gubser, D. van Vechten and G. L. Barz, ibid. 54 (1985) 701.Google Scholar
  7. 7.
    A. J. Hurd and D. W. Schaefer, ibid. 54 (1985) 1043.Google Scholar
  8. 8.
    K. D. Keefer and D. W. Schaefer, ibid. 56 (1986) 2376.Google Scholar
  9. 9.
    D. W. Schaefer, J. E. Martin, P. Wiltzius and D. Cannell, ibid. 52 (1984) 2371.Google Scholar
  10. 10.
    S. R. Forrest and T. A. Witten, J. Phys. A12 (1979) L109.Google Scholar
  11. 11.
    P. Meakin, Phys. Rev. Lett. 51 (1983) 1119.CrossRefGoogle Scholar
  12. 12.
    A. J. Kurd and D. W. Schaefer, ibid. 54 (1985) 1043.CrossRefGoogle Scholar
  13. 13.
    G. M. Dimino and J. H. Kaufman, ibid. 62 (1989) 2277.CrossRefGoogle Scholar
  14. 14.
    J. Z. Zhang, Phys. Rev. B41 (1990) 9614.CrossRefGoogle Scholar
  15. 15.
    J. Berkowitz, M. G. Ingram and W. A. Chupka, J. Chem. Phys. 27 (1957) 842.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Ji -Zhong Zhang
    • 1
    • 2
  • Delu Liu
    • 3
  1. 1.Department of Materials Science and EngineeringTsinghua UniversityBeijing
  2. 2.Center of Condensed Matter and Radiation PhysicsCCAST (World Laboratory)BeijingPeople’s Republic of China
  3. 3.Department of Materials PhysicsUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations