Journal of Materials Science

, Volume 27, Issue 16, pp 4305–4310 | Cite as

Theoretical considerations of thermally stimulated discharge techniques in amorphous semiconductors

  • C. Juhasz
  • B. M. Z. Kamarulzaman
  • S. M. Vaezi-Nejad


Thermally stimulated discharge of a previously polarized and electroded dielectric, can generate a current with several peaks. The locations of the peaks along the thermally stimulated discharge current spectrum are characteristics of the particular mechanisms for the decay. Systematic analysis of the current peaks will yield information such as dipole relaxation characteristics and activation energies for intrinsic conduction or trapping parameters of electronic charges in the dielectric. When multilayer dielectrics such as amorphous semiconductor photoreceptors are subjected to an electret formation cycle, the heterogeneity in their structures may cause several polarization effects. For example, discontinuities in the intrinsic conductivities and dielectric constant in amorphous selenium (a-Se)-based multilayer photoreceptors can lead to the accumulation of space charges at the interfaces of the individual layers whenever the device experiences an electric stress for a period of time which is of the order of its effective dielectric relaxation time. Charge trapping by states associated with the heterogeneities of the structure cause an electrical polarization which can have a significant impact on the xerographic performance of the photoreceptor. The purpose of the present series of papers is firstly to describe the principles of thermally stimulated discharge techniques, the associated theories and interpretation of the current spectrum and secondly, to discuss applications of these techniques to a-Se:Te/Se double layer photoreceptors. The principles of thermally stimulated discharge and relevant theories are discussed.


Activation Energy Selenium Dielectric Constant Space Charge Dielectric Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Vaezi-Nejad and C. Juhasz, J. Mater Sci. 23 (1988) 3286.CrossRefGoogle Scholar
  2. 2.
    Idem, ibid. 23 (1988) 3387.CrossRefGoogle Scholar
  3. 3.
    Idem, ibid. 24 (1989) 471.CrossRefGoogle Scholar
  4. 4.
    M. Eguchi Phil. Mag. 49 (1925) 179.CrossRefGoogle Scholar
  5. 5.
    G. M. Sessler and J. E. West, J. Electrost. 1 (1975) 111.CrossRefGoogle Scholar
  6. 6.
    G. M. Sessler (Ed.), “Electicets”, Topics in Applied Physics, Vol. 33, (Springer, Berlin, Heidelberg, 1980).Google Scholar
  7. 7.
    R. A. Street and A. D. Yoffe, Thin Sol. Films. 11 (1972) 161.CrossRefGoogle Scholar
  8. 8.
    G. Guilland, J. Fornazero and M. Maitrot, J. Appl. Phys. 48 (1977) 3428.CrossRefGoogle Scholar
  9. 9.
    Y. Hoshino and H. Mijata, ibid. 52 (1981) 6214.CrossRefGoogle Scholar
  10. 10.
    S. Mascarenhas, in “Electicets”, Topics in Applied Physics, Vol. 33, edited by G. M. Sessler (Springer, Berlin, Heidelberg, 1980) Ch. 6.Google Scholar
  11. 11.
    G. M. Sessler and J. E. West, J. Acoust. Soc. Amer. 40 (1966) 1433.CrossRefGoogle Scholar
  12. 12.
    R. M. Schaffert, “Electrophotography” (Wiley, New York, 1975).Google Scholar
  13. 13.
    J. Van Turnhout in “Electicets, charge storage and transport in dielectrics”, edited by M. M. Perlman (Electrochemical Society, Princeton, NJ, 1973) p. 230.Google Scholar
  14. 14.
    Idem. “Thermally stimulated Discharge of Polymer Electicets” (Elsevier, Amsterdam, 1975).Google Scholar
  15. 15.
    J. H. Calderwood and B. K. Scaife, Phil. Trans R. Soc. 269 (1970) 217.CrossRefGoogle Scholar
  16. 16.
    B. Gross, in “Electicets”, Topics in Applied Physics, Vol. 33, edited by G. M. Sessler (Springer, Berlin, Heidelberg, New York, 1980 Ch 1.Google Scholar
  17. 17.
    G. F. Leal Ferreira and B. Gross, J. Non-Metals 1 (1973) 129.Google Scholar
  18. 18.
    G. F. Leal Ferreira ibid. 2 (1974) 129.Google Scholar
  19. 19.
    R. A. Creswell and M. M. Perlman, J. Appl. Phys. 41 (1970) 2365.CrossRefGoogle Scholar
  20. 20.
    G. M. Sessler and J. E. West, ibid. 47 (1976) 3480.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • C. Juhasz
    • 1
  • B. M. Z. Kamarulzaman
    • 1
  • S. M. Vaezi-Nejad
    • 2
  1. 1.Solid State Research Group, Department of Electrical EngineeringImperial College of Science, Technology and MedicineLondonUK
  2. 2.Electronic Research Group, School of EngineeringThames PolytechnicLondonUK

Personalised recommendations