Advertisement

Journal of Materials Science

, Volume 27, Issue 16, pp 4294–4299 | Cite as

Carbothermal synthesis of titanium nitride

Part II The reaction sequence
  • G. V. White
  • K. J. D. Mackenzie
  • I. W. M. Brown
  • M. E. Bowden
  • J. H. Johnston
Papers

Abstract

The conversion of TiO2 (both anatase and rutile) to TiN by carbothermal reduction in nitrogen was found to proceed by progressive reduction through a homologous series of Magneli phase oxides TinO2n−1, where n has values of 4–10. The next phase to be observed by X-ray diffraction is Ti3O5, whose formation from the most stable Magneli phase (Ti4O7) is not predicted by the phase diagram, nor by simple thermodynamic calculations. The conversion of triclinic Ti4O7 to monoclinic Ti3O5 appears to be the slow step in the reaction sequence. Formation of TiN then proceeds directly, apparently without the intervention of Ti2O3 or TiO, as usually assumed. A possible cubic oxynitride intermediate was shown by surface analysis to contain no more than 5% oxygen. A small but significant amount of CO is evolved during the formation of Ti4O7, with a larger CO evolution occurring during the nitridation of Ti3O5. Although no direct mass spectroscopic evidence was found for the formation of C3O2, as suggested by previous workers, the present observed weight losses appear to be consistent with this concept. Both the observed reaction sequence and the pattern of CO evolution is consistent with thermodynamic calculations made using a computer program which takes into account the initial nitrogen concentration, and iterates over small temperature intervals.

Keywords

TiO2 Nitride Rutile Reaction Sequence Thermodynamic Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. V. White, K. J. D. Mackenzie and J. H. Johnston, J. Mater. Soc. 27 (1992) 4287.CrossRefGoogle Scholar
  2. 2.
    E. K. Kleepsies and T. A. Hendrie, US Bur. Mines Report 6447 (1964).Google Scholar
  3. 3.
    T. Ličko, V. Figus and J. Púchyová, J. Eur. Ceram. Soc. 5 (1989) 257.CrossRefGoogle Scholar
  4. 4.
    S. Umezu, Proc. Imp. Acad. (Tokyo) 7 (1931) 353.CrossRefGoogle Scholar
  5. 5.
    G. D. Bogmolov, V. D. Lyubimov and G. P. Shverkin, J. Appl. Chem. USSR 44 (1971) 1227.Google Scholar
  6. 6.
    V. D. Lyubimov, T. V. Shestakova, G. P. Shverkin, S. I. Alyamovskii and Yu. G. Zainulin, Inorg. Mater. 13 (1977), 46.Google Scholar
  7. 7.
    V. D. Lyubimov, G. P. Shverkin, Yu. D. Alfonin, T. A. Timoschuk, V. N. Shalaginov, M. V. Kalacheva and S. I. Alyamovskii, ibid. 49 (1984) 49.Google Scholar
  8. 8.
    V. D. Lyubimov, G. K. Koiseev and T. A. Timochuk, ibid. 21 (1985) 1158.Google Scholar
  9. 9.
    G. V. White, K. J. D. Mackenzie, I. W. M. Brown and J. H. Johnston, J. Mater. Sci. 27 (1992) 4300.CrossRefGoogle Scholar
  10. 10.
    G. Eriksson, Chem. Scripta 8 (1975) 100.Google Scholar
  11. 11.
    M. W. Chase (ed.), “JANAF Thermochemical Tables”, 3rd Edn (American Chemical Society, American Institute for Physics, and National Bureau of Standards, 1986).Google Scholar
  12. 12.
    I. Barin and O. Knacke, “Thermochemical Properties of Inorganic Substances” (Springer-Verlag, Berlin, 1973).Google Scholar
  13. 13.
    I. Barin, O. Knacke and O. Kubaschewski, “Supplement to Thermochemical Properties of Inorganic Substances” (Springer-Verlag, Berlin, 1977).CrossRefGoogle Scholar
  14. 14.
    P. G. Wahlbeck and P. W. Gilles, J. Amer. Ceram. Soc. 49 (1966) 180.CrossRefGoogle Scholar
  15. 15.
    L. A. Bursill, B. G. Hyde, O. Terasaki and D. Watanabe, Phil. Mag. 20 (1969) 347.CrossRefGoogle Scholar
  16. 16.
    S. Andersson and L. Jahnberg, Arkiv. Kemi 21 (1964) 413.Google Scholar
  17. 17.
    R. R. Merritt, B. G. Hyde, L. A. Bursill and D. K. Philp, Phil. Trans. R. Soc. Lond. Ser. A 274 (1973) 627.CrossRefGoogle Scholar
  18. 18.
    M. Marezio and P. D. Dernier, J. Solid State Chem. 3 (1971) 340.CrossRefGoogle Scholar
  19. 19.
    “DISPOW”, written by A. C. Larson, F. L. Lee, Y. Le-Page and E. J. Gabe, Chemistry Division, Ottawa, Canada (1983).Google Scholar
  20. 20.
    V. D. Lyubimov, T. V. Shestakova, G. P. Shverkin and S. I. Alyamovskii, Russ. J. Inorg. Chem. 22 (1977) 1620.Google Scholar
  21. 21.
    M. E. Bowden, personal communication (1989).Google Scholar
  22. 22.
    L. E. Toth, “Transition Metal Carbides and Nitrides” (Academic Press, New York, 1971).Google Scholar
  23. 23.
    M. Shimada, T. Suzuku and M. Koizumi, Mater. Lett. 1 (1983) 175.CrossRefGoogle Scholar
  24. 24.
    C. E. Weeks and F. E. Block, US Bur. Mines Bull. 605 (1963).Google Scholar
  25. 25.
    R. A. Robie, B. S. Hemingway and J. R. Fisher, US Geol. Surv. Bull. 1452 (1978).Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • G. V. White
    • 1
  • K. J. D. Mackenzie
    • 1
  • I. W. M. Brown
    • 1
  • M. E. Bowden
    • 1
  • J. H. Johnston
    • 2
  1. 1.DSIR ChemistryPetoneNew Zealand
  2. 2.Chemistry DepartmentVictoria University of WellingtonNew Zealand

Personalised recommendations