Journal of Materials Science

, Volume 27, Issue 16, pp 4287–4293 | Cite as

Carbothermal synthesis of titanium nitride

Part I Influence of starting materials
  • G. V. White
  • K. J. D. Mackenzie
  • J. H. Johnston


Studies of the reactivity of six TiO2 samples (two rutiles and four anatases) and nine carbon samples towards the formation of TiN by reduction of TiO2 with carbon in a nitrogen atmosphere at 1150°C show that the reaction is influenced by the chemical and physical properties of both the TiO2 and the carbon. Although anatases and rutiles behave similarly, their reactivities are adversely affected by the presence of impurities such as those deliberately added as surface coatings in pigment-grade TiO2. There is some evidence that the reactivity of the TiO2 increases with increasing surface area. Carbons with higher ash contents appear to be more reactive. The reactivity of the carbons generally increases with increasing surface area, as measured by gas penetration methods (BET nitrogen adsorption and Blaine gas permeation).


Polymer TiO2 Titanium Nitride Rutile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. Holt, US Pat. 4 622 215 (1984).Google Scholar
  2. 2.
    E. K. Kleepsies and T. A. Hendrie, US Bur. Mines Report 6447 (1964).Google Scholar
  3. 3.
    T. Matsudaira, H. Itoh, S. Naka, H. Hamamoto and M. Obayashi, J. Mater. Sci. 23 (1988) 288.CrossRefGoogle Scholar
  4. 4.
    K. Agte and K. Moers, Z. Anorg. Allgem. Chem. 198 (1931) 233.CrossRefGoogle Scholar
  5. 5.
    P. N. Vaidyanathan, Ceram. Engng Sci. Proc. 9 (1988) 1209.CrossRefGoogle Scholar
  6. 6.
    P. A. Dearnley and T. Bell, ibid. 9 (1988) 1137.CrossRefGoogle Scholar
  7. 7.
    A. Z. Munir, S. Deevi and M. Eslamoo-Grami, High Temp. High Press. 20 (1988) 19.Google Scholar
  8. 8.
    P. Duwez and F. Odell, J. Electrochem. Soc. 97 (1950) 299.CrossRefGoogle Scholar
  9. 9.
    A. Doi, N. Fujïmori and T. Yoshioka, Inst. Phys. Conf. Ser. 75 (1986) 743.Google Scholar
  10. 10.
    Z. Lianxi, J. Pong and R. Junguo, Chengdu Keji Daxue Xuebao (1985) 65.Google Scholar
  11. 11.
    C. E. Bamberger, Powder Diff. 3 (1988) 240.CrossRefGoogle Scholar
  12. 12.
    H. Rose, quoted in J. W. Mellor, “A Comprehensive Treatise on Inorganic and Theoretical Chemistry”, Vol. VII (Longmans, London, 1972) p. 43.Google Scholar
  13. 13.
    N. F. Shulz, Int. J. Min. Proc. 1 (1974) 65.CrossRefGoogle Scholar
  14. 14.
    G. V. White, K. J. D. Mackenzie, I. W. M. Brown, M. E. Bowden and J. H. Johnston, J. Mater. Sci. 27 (1992) 4294.CrossRefGoogle Scholar
  15. 15.
    M. B. Bever (ed.), “Encyclopaedia of Materials Science Engineering” (Pergamon, London, 1986) p. 3206.Google Scholar
  16. 16.
    P. P. Alexander, US Pat. 2 461 018 (1949).Google Scholar
  17. 17.
    G. V. White, K. J. D. Mackenzie, I. W. M. Brown and J. H. Johnston, J. Mater. Sci. 27 (1992) 4300.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • G. V. White
    • 1
  • K. J. D. Mackenzie
    • 1
  • J. H. Johnston
    • 2
  1. 1.Chemistry DivisionDSIRPetoneNew Zealand
  2. 2.Chemistry DepartmentVictoria University of WellingtonNew Zealand

Personalised recommendations