Advertisement

Journal of Materials Science

, Volume 27, Issue 10, pp 2831–2839 | Cite as

Effects of liquid environments on zirconia-toughened alumina

Part II Mechanical properties
  • I. Thompson
  • R. D. Rawlings
Papers

Abstract

The corrosion resistance of a zirconia-toughened alumina after prolonged exposure to a series of liquid environments is assessed. From the range of environments studied, only HCl caused a significant degradation in both strength and toughness. The mechanism of this deleterious behaviour was the transformation of the tetragonal zirconia particles to the monoclinic polymorph at the surface. The mechanical properties were determined by both the monoclinic content and the depth of penetration of the HCl, and hence the depth of the monoclinic-containing surface layer, with the latter probably being more important.

Keywords

Polymer Alumina Mechanical Property Zirconia Surface Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Garvie, R. H. J. Hannink and R. T. Pascoe, Nature 258 (1975) 703.CrossRefGoogle Scholar
  2. 2.
    A. G. Evans and A. H. Heuer, J. Amer. Ceram. Soc. 63 (1980) 241.CrossRefGoogle Scholar
  3. 3.
    N. Claussen and M. Ruhle, in “Advances in Ceramics, Volume 3: Science and Technology of Zirconia”, edited by A. H. Herer and L. W. Hobbs (American Ceramics Society, Columbus, Ohio, 1981) pp. 137–164.Google Scholar
  4. 4.
    F. F. Lange, J. Mater. Sci. 17 (1982) 225.CrossRefGoogle Scholar
  5. 5.
    R. Stevens, “Introduction to Zirconia.” Publ. No. 113 (Magnesium Elektron, 1986) pp. 8–34.Google Scholar
  6. 6.
    N. Claussen, in “Advances in Ceramics, Volume 12, Science and Technology of Zirconia II”, edited by N. Claussen and M. Ruhle (American Ceramics Society, Columbus, Ohio, 1984) pp. 325–352.Google Scholar
  7. 7.
    A. G. Evans, in ibid.“ pp. 193–213.Google Scholar
  8. 8.
    K. T. Faber, in ibid.“ pp. 293–306.Google Scholar
  9. 9.
    N. Claussen, J. Amer. Ceram. Soc. 59 (1976) 49.CrossRefGoogle Scholar
  10. 10.
    S. Maschio and O. Sbaizero, Ceram. Int. 15 (1989) 363.CrossRefGoogle Scholar
  11. 11.
    R. L. K. Matsumoto, J. Amer. Ceram. Soc. 68 (1985) C-213.CrossRefGoogle Scholar
  12. 12.
    F. F. Lange, G. L. Dunlop and B. I. Davis, ibid. 69 (1986) 237.CrossRefGoogle Scholar
  13. 13.
    T. Sato, S. Ohtaki and M. Shimada, J. Mater. Sci. 20 (1985) 1466.CrossRefGoogle Scholar
  14. 14.
    T. Sato, S. Ohtaki, T. Endo and M. Shimada, Presented at Zirconia 1986, to be published in Proc. 3rd Int. Conf. on Science and Technology of Zirconia, Tokyo, Sept., 1986.Google Scholar
  15. 15.
    T. Sato, S. Ohtaki, T. Endo and M. Shimada, J. Mater. Sci. Lett. 5 (1986) 1140.CrossRefGoogle Scholar
  16. 16.
    T. Sato and M. Shimada, J. Amer. Ceram. Soc. 68 (1985) 356.CrossRefGoogle Scholar
  17. 17.
    T. Sato, S. Ohtaki, T. Endo and M. Shimada, in “High-Tech. Ceramics,” edited by P. Vincenzini (Elsevier, Amsterdam, 1987) pp 281–288.Google Scholar
  18. 18.
    I. Thompson and R. D. Rawlings, Biomaterials 11 (1990) 505.CrossRefGoogle Scholar
  19. 19.
    W. P. R. Byrne, M. J. Hanney and R. Morrell, in Proceedings of the British Ceramics Society No. 32, “Engineering with Ceramics”, edited by R. W. Davidge.Google Scholar
  20. 20.
    C. C. McMahon, J. Amer. Ceram. Soc. Bull. 58 (1979) 873Google Scholar
  21. 21.
    L. A. Lay, NPL Rep. Chem. 96 (1979) 3.Google Scholar
  22. 22.
    Idem. “Corrosion Resistance of Technical Ceramics,” (HMSO, London, 1983).Google Scholar
  23. 23.
    S. Sinharoy, L. L. Levenson, W. V. Ballard and D. E. Day, J. Amer. Ceram. Soc. Bull. 57 (1978) 231.Google Scholar
  24. 24.
    S. Sinharoy, L. L. Levenson and D. E. Day, ibid. 58 (1979) 464.Google Scholar
  25. 25.
    I. Thompson, R. D. Rawlings, J. Mater. Sci. 27 (1992) 2823.CrossRefGoogle Scholar
  26. 26.
    G. D. Quinn, ibid. 22 (1987) 2309.CrossRefGoogle Scholar
  27. 27.
    B. J. Dalgleish and R. D. Rawlings, J. Biomed. Res. 15 (1981) 527.CrossRefGoogle Scholar
  28. 28.
    K. E. Aeberli and R. D. Rawlings, J. Mater. Sci. Lett. 2 (1983) 215.CrossRefGoogle Scholar
  29. 29.
    H. Wieninger, K. Kromp and R. F. Pabst, J. Mater. Sci. 21 (1986) 411.CrossRefGoogle Scholar
  30. 30.
    M. V. Swain and R. H. J. Hannink, in “Advances in Ceramics Volume 12, Science and Technology of Zirconia II”, edited by N. Claussen and M. Ruhle (American Ceramics Society, Columbus, Ohio, 1984) pp. 225–240.Google Scholar
  31. 31.
    M. V. Swain, J. Mater. Sci. Lett. 5 (1986) 1313.CrossRefGoogle Scholar
  32. 32.
    K. Nakajima, K. Kobayashi and Y. Murata, in “Advances in Ceramics Volume 12, Science and Technology of Zirconia II”, edited by N. Claussen and M. Ruhle (American Ceramics Society, Columbus, Ohio, 1984) pp. 399–408.Google Scholar
  33. 33.
    R. W. Davidge, J. R. McLaren and G. Tappin, J. Mater. Sci. 8 (1973) 1699.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • I. Thompson
    • 1
  • R. D. Rawlings
    • 1
  1. 1.Department of MaterialsImperial College of Science, Technology and MedicineLondonUK

Personalised recommendations