Advertisement

Journal of Materials Science

, Volume 27, Issue 10, pp 2811–2822 | Cite as

Interface characterization and fracture of calcium aluminosilicate glass-ceramic reinforced with nicalon fibres

  • S. M. Bleay
  • V. D. Scott
  • B. Harris
  • R. G. Cooke
  • F. A. Habib
Papers

Abstract

An investigation of the structure and properties of a calcium aluminosilicate glass-ceramic reinforced with Nicalon fibres is described. Microstructural analysis of the interface showed that during manufacture of the composite a reaction zone rich in carbon formed between the Nicalon fibre and the anorthite matrix. Tensile strengths were approximately 330 MPa for unidirectional material and around 210 MPa for a (0°/90°)3s. composite, little more than half that predicted by the mixtures rule. Flexural strengths were, however, higher than tensile strengths, by a factor 1.5–2.5 depending on lay-up. Studies carried out on specimens heat treated in air for 24 h at temperatures in the range 600–1200 °C showed a progressive change of interface microstructure in the outermost regions of the specimens due to oxidation of the carbon-rich layer; at 1000 °C and above the carbon had disappeared to leave voids and silica-rich bridges between fibre and matrix. These changes affected the strength of the interfacial bond, as measured by an micro-indentation technique, and also the degree of fibre pull-out produced in mechanical tests. Thus as-received material exhibited appreciable pull-out whilst heattreated samples were characterized by brittle behaviour in the outer (oxidized) regions. Nevertheless, the composites whilst in the unstressed condition appeared to survive these short-term exposures to oxidizing environments. An interfacial shear stress of around 5 MPa was calculated by applying the Aveston, Cooper and Kelly theory to crack spacings measured in our room-temperature deformation experiments, a value which agreed well with the 3–5 MPa obtained by the micro-indentation method.

Keywords

Tensile Strength Flexural Strength Interfacial Shear Interfacial Shear Stress Interface Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. J. Sambell, A. Briggs, D. C. Phillips and D. H. Bowen, J. Mater. Sci. 7 (1972) 676.CrossRefGoogle Scholar
  2. 2.
    D. C. Phillips, ibid. 9 (1974) 1847.CrossRefGoogle Scholar
  3. 3.
    S. Yajima, K. Okamura, J. Hayashi and M. Omori, J. Amer. Ceram. Soc. 59 (1976) 324.CrossRefGoogle Scholar
  4. 4.
    K. M. Prewo and J. J. Brennan, J. Mater. Sci. 17 (1982) 1201.CrossRefGoogle Scholar
  5. 5.
    A. Briggs and R. W. Davidge, Mater. Sci. Engng A109 (1989) 363.CrossRefGoogle Scholar
  6. 6.
    J. J. Brennan and K. M. Prewo, J. Mater. Sci. 17 (1982) 2371.CrossRefGoogle Scholar
  7. 7.
    E. Bischoff, M. Rühle, O. Sbaizero and A. G. Evans, J. Amer. Ceram. Soc. 72 (1989) 741.CrossRefGoogle Scholar
  8. 8.
    R. F. Cooper and K. Chyung, J. Mater. Sci. 22 (1987) 3148.CrossRefGoogle Scholar
  9. 9.
    D. B. Marshall and A. G. Evans, J. Amer Ceram. Soc. 68 (1985) 225.CrossRefGoogle Scholar
  10. 10.
    I. Y. Borg and D. H. Smith, Amer. Mineral 53 (1968) 1709.Google Scholar
  11. 11.
    P. W. McMillan “Glass-Ceramics” (2nd Edn Academic Press, London, 1979) p. 14.Google Scholar
  12. 12.
    M. Tashiro, Glass Ind. 47 (1966) 428.Google Scholar
  13. 13.
    P. W. McMillan and D. C. Lawton Brit. Pat. no. 1067 392. (1967)Google Scholar
  14. 14.
    R. Chaim and A. H. Heuer, Adv. Ceram. Mater. 2 (1987) 154.CrossRefGoogle Scholar
  15. 15.
    J.-Y. Hsu and R. F. Speyer, J. Amer. Ceram. Soc. 73 (1990) 3585.CrossRefGoogle Scholar
  16. 16.
    S. M. Bleay and V. D. Scott, J. Mater. Sci. 26 (1991) 2229.CrossRefGoogle Scholar
  17. 17.
    K. M. Prewo, J. Mater. Sci. 21 (1986) 3590.CrossRefGoogle Scholar
  18. 18.
    R. Y. Kim and A. P. Katz, Ceram. Engng Sci. Proc. (Amer. Ceram. Soc.) 9 (1988) 853.CrossRefGoogle Scholar
  19. 19.
    K. M. Prewo and J. J. Brennan, J. Mater. Sci. 15 (1980) 463CrossRefGoogle Scholar
  20. 20.
    Idem., ibid. 17 (1982) 1201.CrossRefGoogle Scholar
  21. 21.
    J. Aveston, G. A. Cooper and A. Kelly, “The Properties of Fibre Composites” (IPC Science and Technology Press, Guildford, 1971) pp. 15–26Google Scholar
  22. 22.
    J. Aveston and A. Kelly, J. Mater. Sci. 8 (1973) 352.CrossRefGoogle Scholar
  23. 23.
    J. Aveston, R. A. Mercer and J. M. Sillwood, “Composites-Standards, Testing and Design” (IPC Science and Technology Press, Guildford, 1974) pp. 93–102.Google Scholar
  24. 24.
    A. G. Evans, “Mechanical and Physical Behaviour of Metallic and Ceramic Composites”, edited by S. I. Andersen, H. Lilholt and O. B. Pedersen (Risø, Denmark, 1988) pp. 13–34.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • S. M. Bleay
    • 1
  • V. D. Scott
    • 1
  • B. Harris
    • 1
  • R. G. Cooke
    • 1
  • F. A. Habib
    • 1
  1. 1.School of Materials ScienceUniversity of BathBathUK

Personalised recommendations