Journal of Materials Science

, Volume 27, Issue 10, pp 2753–2762 | Cite as

Modelling of the toughening mechanisms in rubber-modified epoxy polymers

Part I Finite element analysis studies
  • Y. Huang
  • A. J. Kinloch


The finite element method has been employed to study the micromechanics and micromechanisms in rubber-toughened cross-linked-epoxy polymers. A two-dimensional plane-strain model has been proposed and has successfully been used to identify the stress fields associated with the dispersed rubbery phase and to simulate the initiation and growth of localized plastic shear-bands running between the rubbery particles. The effects of the microstructure and mechanical properties of the multiphase polymer on the nature and magnitude of the stress fields have also been examined.


Polymer Microstructure Mechanical Property Epoxy Finite Element Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Kinloch, in “Rubber-Toughened Plastics”, edited by C. K. Riew, ‘Advances in Chemistry Series’ Vol. 222 (American Chemical Society, Washington, DC, 1989) p. 67.CrossRefGoogle Scholar
  2. 2.
    A. J. Kinloch, S. J. Shaw and D. L. Hunston, Polymer 24 (1983) 1355.CrossRefGoogle Scholar
  3. 3.
    R. A. Pearson and A. F. Yee, J. Mater. Sci. 21 (1986) 2475.CrossRefGoogle Scholar
  4. 4.
    Y. Huang, PhD Thesis, University of London (1991).Google Scholar
  5. 5.
    Y. Huang and A. J. Kinloch, J. Mater. Sci. Lett. (1992) in press.Google Scholar
  6. 6.
    J. N. Goodier, ASME Appl. Mech. Mag. 55 (1933) 39.Google Scholar
  7. 7.
    L. J. Broutman and G. Panizza, Int. J. Polym. Mater. 1 (1971) 95.CrossRefGoogle Scholar
  8. 8.
    B. D. Agarwal and L. J. Broutman, Fibre Sci. Tech. 7 (1974) 63.CrossRefGoogle Scholar
  9. 9.
    F. J. Guild and R. J. Young, J. Mater. Sci. 24 (1989) 2454.CrossRefGoogle Scholar
  10. 10.
    R. N. Haward and D. R. J. Owen, ibid. 8 (1973) 1136.CrossRefGoogle Scholar
  11. 11.
    H. J. Sue and A. F. Yee, Polymer 29 (1988) 1619.CrossRefGoogle Scholar
  12. 12.
    “PAFEC User's Manuel”, Level 6.2 (PAFEC 1988) (Nottingham, UK).Google Scholar
  13. 13.
    “ABAQUS User's Manuel” (Habbit, Karlsson and Sorensen, 1988) (Pawtucket, RI, USA).Google Scholar
  14. 14.
    A. J. Kinloch, C. A. Finch and S. Hashemi, Polym. Commun. 28 (1987) 229.Google Scholar
  15. 15.
    S. C. Kunz and P. W. R. Beaumont, J. Mater. Sci. 16 (1981) 3141.CrossRefGoogle Scholar
  16. 16.
    A. J. Kinloch and R. J. Young, “Fracture Behaviour of Polymers” (Applied Science, London, 1983).Google Scholar
  17. 17.
    A. S. Wronski and M. Pick, J. Mater. Sci. 12 (1977) 28.CrossRefGoogle Scholar
  18. 18.
    P. B. Bowden, in “The Physics of Glassy Polymers”, edited by R. N. Haward (Applied Science, London, 1975).Google Scholar
  19. 19.
    Y. Huang and A. J. Kinloch, J. Mater. Sci. 27 (1992) 2763.CrossRefGoogle Scholar
  20. 20.
    O. Mauzac and R. Schirrer, J. Mater. Sci. 25 (1990) 5125.CrossRefGoogle Scholar
  21. 21.
    A. F. Yee and R. A. Pearson, ibid. 21 (1986) 2462.CrossRefGoogle Scholar
  22. 22.
    S. H. Liu and E. B. Nauman, ibid. 25 (1990) 2071.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Y. Huang
    • 1
  • A. J. Kinloch
    • 1
  1. 1.Department of Mechanical EngineeringImperial College of Science, Technology and MedicineLondonUK

Personalised recommendations