Advertisement

Journal of Materials Science

, Volume 27, Issue 10, pp 2705–2712 | Cite as

Low-temperature synthesis of sinterable SiC powders by carbothermic reduction of colloidal SiO2

  • V. M. Kevorkijan
  • M. Komac
  • D. Kolar
Papers

Abstract

β-SiC powders were synthesised by carbothermic reduction of carbon-black doped silica gel. The morphological characteristics of the resulting powders depend on the morphology of precursor carbon black as well as the reaction conditions. A model for particle coarsening during carbothermic reduction is presented, suggesting that surface diffusion may be responsible for the formation of polycrystalline aggregates, while at higher reaction temperatures volume diffusion is operative. Processing consisting of decarburization, HF treatment and sedimentation but no milling is required to convert crude reaction products into sinterable powders. After doping with boron and carbon they can be sintered to 98–99% of theoretical density which, in general, is better than or comparable to results obtained with commercial β-SiC powders which were also included in the present study.

Keywords

Boron Milling Surface Diffusion Decarburization Theoretical Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kijima and M. Konishi, J. Ceram. Soc. Jpn 93 (1985) 511.Google Scholar
  2. 2.
    W. R. Cannon, S. C. Danforth, J. H. Flint, J. S. Haggerty and R. A. Marra, J. Amer. Ceram. Soc. 65 (1982) 324.CrossRefGoogle Scholar
  3. 3.
    G. C. Wei, Commun. J. Amer. Ceram. Soc. 66 (1983) C-111.Google Scholar
  4. 4.
    P. T. B. Shaffer and K. A. Blakely, in “Advances in Ceramics”, Vol. 21 (American Ceramic Society, Westerville, 1987) p. 257.Google Scholar
  5. 5.
    G. C. Wei, C. R. Kennedy and L. A. Harris, Amer. Ceram. Soc. Bull. 63 (1984) 1054.Google Scholar
  6. 6.
    K. A. Schwetz and A. Lipp, Radex-Rundschau 2 (1978) 489.Google Scholar
  7. 7.
    N. Murakawa, M. Nakajima, K. Maruyama, K. Isogaya and K. Yoshida, “High Tech. Ceramics” (Elsevier, Amsterdam, 1987) p. 501.Google Scholar
  8. 8.
    P. Kennedy and B. North, in Proceedings of the British Ceramic Society, No. 33, edited by D. Taylor (British Ceramic Society, Stoke-on-Trent, 1983) p. 3.Google Scholar
  9. 9.
    H. Tanaka and Y. Kurachi, Ceram. Int. 14 (1988) 109.CrossRefGoogle Scholar
  10. 10.
    K. A. Schwetz and J. Hassler, J. Less-Common Met. 117 (1986) 7.CrossRefGoogle Scholar
  11. 11.
    J. Rottmann and F. Schleifer, “Gase in Metallen” (DGM, Köln, 1982) p. 343.Google Scholar
  12. 12.
    J. L. Blumenthal, M. J. Santy and E. A. Burns, AIAA J. 4 (1966) 1053.CrossRefGoogle Scholar
  13. 13.
    C. Greskovich and J. H. Rosolowski, J. Amer. Ceram. Soc. 59 (1976) 336.CrossRefGoogle Scholar
  14. 14.
    P. Elder and V. D Krstić, J. Mater. Sci. Lett. 8 (1989) 941.CrossRefGoogle Scholar
  15. 15.
    R. Pampuch and K. Haberko, “Ceramic Powders” (Elsevier, Amsterdam, 1983) p. 623.Google Scholar
  16. 16.
    G. A. Bootsma, W. F. Knippenberg and G. Verspni, J. Cryst. Growth 8 (1971) 341.CrossRefGoogle Scholar
  17. 17.
    J. Brunestad, C. E. Bamberger, D. E. Heartherly and J. F. Land, Commun. J. Amer. Ceram. Soc. 67 (1984) 184.Google Scholar
  18. 18.
    P. Matje and K. A. Schwetz, “Ceramic Powder Processing Science” (DKG, Köln, 1989) p. 377.Google Scholar
  19. 19.
    M. Hashiba, H. Okamoto, Y. Nurishi and K. Hiramatsu, J. Mater. Sci. 23 (1988) 2893.CrossRefGoogle Scholar
  20. 20.
    E. Carlström, M. Persson, E. Bostedt, A. Kristofferson and R. Carlsson, in “Ceramic Transactions”, Vol. 2, Silicon Carbide 87, edited by J. D. Cawley and C. E. Semler (American Ceramic Soc., Westerville, 1989) p. 175.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • V. M. Kevorkijan
    • 1
  • M. Komac
    • 1
  • D. Kolar
    • 1
  1. 1.Jožef Stefan InstituteUniversity of LjubljanaLjubljanaMacedonia

Personalised recommendations