Journal of Materials Science

, Volume 27, Issue 10, pp 2687–2694 | Cite as

Laser welding of oxide dispersion-strengthened alloy MA754

  • P. A. Molian
  • Y. M. Yang
  • P. C. Patnaik


Conventional arc-welding of MA 754, an oxide dispersion-strengthened (ODS) superalloy, poses two significant problems: agglomeration of dispersoids and weld solidification grain boundaries perpendicular to the rolled direction, both of which reduce the high-temperature creep and stress rupture properties. In the present work, laser welding of MA 754 alloy was conducted to determine the effects of a high energy density source on the microstructure and mechanical properties of a 3.2 mm thick butt joint. Tungsten-inert-gas (TIG) welding was also studied for comparison purpose. X-ray diffraction, optical microscopy and scanning electron microscopy analysis coupled with tensile, hardness and hot corrosion tests were used to evaluate the performance of weldments. Results indicated the absence of dispersoid agglomeration and superior tensile and corrosion properties of laser weldments over arc welds. The properties of laser weldments are comparable to those of wrought MA 754.


Welding Laser Welding Corrosion Test Stress Rupture Butt Joint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. H. Gessinger and R. F. Singer, in “Powder Metallurgy of Superalloys”, edited by G. H. Gessinger (Butterworths, London, 1984) pp. 213–292.CrossRefGoogle Scholar
  2. 2.
    J. S. Benjamin and M. J. Bomford, Metall. Trans. 5 (1974) 615.CrossRefGoogle Scholar
  3. 3.
    J. S. Benjamin, ibid. 1 (1970) 2943.Google Scholar
  4. 4.
    “Alloy Digest” (Inco Alloys International, London, 1978) Ni-244.Google Scholar
  5. 5.
    “Inco Map” (Inco Alloys International, London, 1978) G1-Cr1.Google Scholar
  6. 6.
    P. S. Gilman, Progr. Powder Metall. 41 (1985) 455.Google Scholar
  7. 7.
    R. C. Benn, in “Micon 86: Optimization of Processing, Properties, and Service Performance Through Microstructural Control”, edited by B. L. Bramfitt, R. C. Benn, C. R. Brinkman and G. F. Vander Voort (American Society for Testing and Materials, Philadelphia, 1988) pp. 237–246.Google Scholar
  8. 8.
    L. E. Shoemaker, in “Advances in Welding Science and Technology”, edited by S. A. David (American Society for Metals, Gatlinburg, TN, 1986) pp. 371–377.Google Scholar
  9. 9.
    T. J. Kelly, “Trends in Welding Research”, edited by S. A. David (American Society for Metals, Philadelphia, 1981) pp. 471–487.Google Scholar
  10. 10.
    B. Jahnke, in “High Temperature Alloys for Gas Turbines and Other Applications I”, edited by W. Betz, R. Brunetaud, D. Cousouradis, H. Fishmeister, T. B. Gibbons, I. Kvernes, Y. Lindblom, J. B. Marriott and D. B. Meadowcroft (D. Reidel, Brussels, 1986) pp. 176–216.Google Scholar
  11. 11.
    T. J. Kelly, in Proceedings of Symposium on Laser-Solid Interactions and Laser Processing, Boston, December 1978, Materials Research Society, pp. 215–220.Google Scholar
  12. 12.
    P. Steinmetz, C. Duret and R. Morbioli, Mater. Sci. Technol. 2 (1986) 262.CrossRefGoogle Scholar
  13. 13.
    T. J. Kelly, in “Frontiers of High Temperature Material I”, edited by G. A. Mock (Inco Alloys International, London, 1981) pp. 267–272.Google Scholar
  14. 14.
    J. Stringer, B. A. Wilcox and R. I. Jaffee, Oxid. Met. 5 (1972) 11.CrossRefGoogle Scholar
  15. 15.
    P. Huber and G. H. Gessinger, “Materials and Coatings to Resist High Temperature Corrosion” (Applied Science, London, 1978) p. 71.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • P. A. Molian
    • 1
    • 2
  • Y. M. Yang
    • 1
    • 2
  • P. C. Patnaik
    • 1
    • 2
  1. 1.Mechanical Engineering DepartmentIowa State UniversityAmesUSA
  2. 2.Orenda DivisionHawker Siddley CanadaGloucesterCanada

Personalised recommendations