Advertisement

Journal of Materials Science

, Volume 27, Issue 10, pp 2649–2652 | Cite as

Effect of strain rate on the fracture behaviour of collagen

  • V. Arumugam
  • M. D. Naresh
  • N. Somanathan
  • R. Sanjeevi
Papers

Abstract

The strain-rate dependence of collagen fibre, a viscoelastic material, was studied both in the native and dry conditions. The strain rate effect was observed in the stress-strain, plastic set behaviour of both dry and wet collagen fibres. Fractured ends of the broken fibres, observed using scanning electron microscopy, showed that the fracture behaviour was different at high and low strain rates. The results are compared with those for elastoidin.

Keywords

Collagen Polymer Microscopy Electron Microscopy Scanning Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. J. Rigby, N. Hirai, J. D. Spikes, and H. Eyring, J. Gen-Physiol. 43 (1959), 265.CrossRefGoogle Scholar
  2. 2.
    I. V. Yannas, J. Macromol. Sci. Rev. Macromol Chem. C-7(1) (1972) 49.CrossRefGoogle Scholar
  3. 3.
    A. Viidik, in “Biology of collagen”, edited by A. Viidik and J. Vuust (Academic Press, New York, 1980) p. 257.Google Scholar
  4. 4.
    J. T. Hintler, J. J. Cassidy, and E. Baer, Ann. Rev. Mater. Sci. 15 (1985) 455.CrossRefGoogle Scholar
  5. 5.
    H. G. Vogel, Conn. Tiss. Res. 6 (1978) 161.CrossRefGoogle Scholar
  6. 6.
    A. Rajaram, R. Sanjeevi, and N. Ramanathan, Leath. Sci. 25 (1978) 419.Google Scholar
  7. 7.
    H. G. Vogel, Conn. Tiss. Res. 6 (1978) 83.CrossRefGoogle Scholar
  8. 8.
    R. C. Haut, J. Biomech. 19 (1986) 951.CrossRefGoogle Scholar
  9. 9.
    C. C. Danielson and T. T. Andreassen, J. Biomech. 21(3) (1988) 207.CrossRefGoogle Scholar
  10. 10.
    R. C. Haut, ASME J. Biomech. Engng 105 (1983) 296.CrossRefGoogle Scholar
  11. 11.
    J. Kastelic and E. Baer, in “The mechanical properties of biological materials”, edited by J. F. V. Vincent and J. D. Curry (Cambridge University Press, Cambridge, 1980) p. 397.Google Scholar
  12. 12.
    D. B. Meyers, J. C. Highton and D. G. Rayns, J. Ultrastruct. Res. 42 (1973) 87.CrossRefGoogle Scholar
  13. 13.
    A. Rajaram, R. Sanjeevi and N. Ramanathan, J, Amer. Leath. Chem. Assoc. 73 (1978) 387.Google Scholar
  14. 14.
    V. Mohanaradhakrishnan, PhD thesis, University of Madras (1969).Google Scholar
  15. 15.
    R. Meredith, J. Text. Inst. 36 (1945) T 107.CrossRefGoogle Scholar
  16. 16.
    V. Arumugam and R. Sanjeevi, J. Mater. Sci. 22 (1987) 2691.CrossRefGoogle Scholar
  17. 17.
    A. C. Brown and J. A. Swift, J. Soc. Cosmet. Chem. 26 (1975) 289.Google Scholar
  18. 18.
    G. H. Henderson, G. M. Karg and J. J. O'Neil, J. Soc. Cosmet. Chem. 29 (1978) 449.Google Scholar
  19. 19.
    J. W. S. Hearle, B. C. Jariwala, J. L. Konospasek and B. Lomas, in Proceedings of the 5th International Wool Textile Research Conference, Aachen, II (1975) p. 370. (J. Appl. Polym. Sci. 27 (1982) 3809)Google Scholar
  20. 20.
    Y. K. Kamath and H. D. Weigman, J. Appl. Polym. Sci. 27 (1982) 3809.CrossRefGoogle Scholar
  21. 21.
    A. Rajaram, R. Sanjeevi and N. Ramanathan, J. Bio. Sci. 3 (1981) 303.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • V. Arumugam
    • 1
  • M. D. Naresh
    • 1
  • N. Somanathan
    • 1
  • R. Sanjeevi
    • 1
  1. 1.Biophysics LaboratoryCentral Leather Research InstituteAdyar, MadrasIndia

Personalised recommendations