Advertisement

Journal of Materials Science

, Volume 27, Issue 10, pp 2641–2648 | Cite as

Constant heating rate analysis of simultaneous sintering mechanisms in alumina

  • S. H. Hillman
  • R. M. German
Papers

Abstract

Constant heating rate sintering experiments were conducted on a submicron alumina powder during the initial stage. Shrinkage was measured by precision dilatometry and surface area reduction was monitored with gas adsorption measurements. Furthermore, grain size and pore size results were collected using X-ray line broadening and mercury porosimetry. Analysis of the shrinkage and surface area reduction data showed excellent correlation with a computer simulation based on simultaneous surface diffusion and grain boundary diffusion mechanisms. A comparison of the simulated and the experimental sintering paths on a plot of surface area reduction versus shrinkage indicated the combination of mechanisms and activations energies which best describe this sintering behaviour. From this analysis the estimated activation energies for grain boundary and surface diffusion are 440 and 508 kJ mol−1, respectively.

Keywords

Activation Energy Shrinkage Surface Diffusion Dilatometry Alumina Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. E. Exner, Revs. Powder Met. Phys. Ceram. 1 (1979) 7.Google Scholar
  2. 2.
    K. S. Hwang and R. M. German, in “Sintering and heterogeneous catalysis”, edited by G. C. Kuczynski, A. E. Miller and G. A. Sargent (Plenum Press, New York, NY, 1984) p. 35.Google Scholar
  3. 3.
    F. A. Nichols and W. W. Mullins, J. Appl. Phys. 36 (1965) 1826.CrossRefGoogle Scholar
  4. 4.
    R. M. German and J. F. Lathrop, J. Mater. Sci. 13 (1978) 921.CrossRefGoogle Scholar
  5. 5.
    D. L. Johnson, J. Appl. Phys. 40 (1969) 192.CrossRefGoogle Scholar
  6. 6.
    H. E. Exner and P. Bross, Acta Met. 27 (1979) 1007.CrossRefGoogle Scholar
  7. 7.
    P. Bross and H. E. Exner, ibid. 27 (1979) 1013.CrossRefGoogle Scholar
  8. 8.
    J. W. Ross, W. A. Miller and G. C. Weatherly, Z. Metallkde. 73 (1982) 391.Google Scholar
  9. 9.
    K. Breitkreutz and D. Amthor, Metall. 29 (1975) 990.Google Scholar
  10. 10.
    R. M. German, Scripta Met. 14 (1980) 955.CrossRefGoogle Scholar
  11. 11.
    H. E. Exner, in “Sintering '87”, Vol. 1, edited by S. Somiya, M. Shimada, M. Yoshimura and R. Watanabe (Elsevier, London, 1988) p. 291.Google Scholar
  12. 12.
    R. M. German, Powder Met. 22 (1979) 29.CrossRefGoogle Scholar
  13. 13.
    D. L. Johnson and I. B. Cutler, J. Amer. Ceram. Soc. 46 (1963) 545.CrossRefGoogle Scholar
  14. 14.
    K. Asaga and K. Hamano, Yogyo-Kyokai-Shi 83 (1975) 40.CrossRefGoogle Scholar
  15. 15.
    D. L. Johnson, in “Kinetics of reactions in ionic systems”, edited by T. J. Gray and V. D. Frechette (Plenum Press, New York, NY, 1969) p. 331.CrossRefGoogle Scholar
  16. 16.
    W. R. Rao and I. B. Cutler, J. Amer. Ceram. Soc. 56 (1973) 588.CrossRefGoogle Scholar
  17. 17.
    Idem., ibid. 55 (1972) 170.CrossRefGoogle Scholar
  18. 18.
    R. L. Coble, ibid. 41 (1958) 55.CrossRefGoogle Scholar
  19. 19.
    T. L. Wilson and P. G. Shewmon, Trans. TMS-AIME 236 (1966) 48.Google Scholar
  20. 20.
    C. Greskovich and K. W. Lay, J. Amer. Ceram. Soc. 55 (1972) 142.CrossRefGoogle Scholar
  21. 21.
    S. Prochazka and R. L. Coble, Phys. Sintering 2 [2] (1970) 15.Google Scholar
  22. 22.
    R. M. German and Z. A. Munir, in “Sintering and catalysis”, edited by G. C. Kuczynski (Plenum Press, New York, NY, 1975) p. 259.CrossRefGoogle Scholar
  23. 23.
    R. M. German, Powder Tech. 17 (1977) 287.CrossRefGoogle Scholar
  24. 24.
    R. F. Walker, J. Amer. Ceram. Soc. 38 (1955) 187.CrossRefGoogle Scholar
  25. 25.
    G. C. Kuczynski, L. Abernethy and J. Allen, in “Kinetics of high temperatures processes”, edited by W. D. Kingery (John Wiley, New York, NY, 1959) p. 163.Google Scholar
  26. 26.
    R. L. Coble, J. Amer. Ceram. Soc. 45 (1962) 123.CrossRefGoogle Scholar
  27. 27.
    F. W. Dynys and J. W. Halloran, ibid. 67 (1984) 596.CrossRefGoogle Scholar
  28. 28.
    E. L. Kemer and D. L. Johnson, Ceramic Bull. 64 (1985) 1132.Google Scholar
  29. 29.
    J. P. Smith and G. L. Messing, J. Amer. Ceram. Soc. 67 (1984) 238.CrossRefGoogle Scholar
  30. 30.
    T. S. Yeh and M. D. Sacks, ibid. 71 (1988) 841.CrossRefGoogle Scholar
  31. 31.
    J. Zheng and J. S. Reed, ibid. 72 (1988) 810.CrossRefGoogle Scholar
  32. 32.
    W. S. Young and I. B. Cutler, ibid. 53 (1970) 659.CrossRefGoogle Scholar
  33. 33.
    J. L. Woolfrey and M. J. Bannister, ibid. 55 (1972) 390.CrossRefGoogle Scholar
  34. 34.
    J. J. Bacmann and G. Cizeron, ibid. 51 (1968) 209.CrossRefGoogle Scholar
  35. 35.
    T. S. Wei and R. M. German, in “Modern developments in powder metallurgy”, Vol. 15, edited by E. N. Aqua and C. I. Whitman (Metal Powder Industries Federation, Princeton, NJ, 1985) p. 307.Google Scholar
  36. 36.
    D. B. Cullity, in “Elements of X-ray diffraction” (Addison-Wesley, Reading, MA, 1978) p. 102.Google Scholar
  37. 37.
    T. S. Wei, PhD Thesis, Rensselaer Polytechnic Institute, Troy, NY (1987).Google Scholar
  38. 38.
    R. M. German and Z. A. Munir, J. Amer. Ceram. Soc. 59 (1976) 379.CrossRefGoogle Scholar
  39. 39.
    H. J. Frost and M. F. Ashby, in “Deformation-mechanism maps” (Pergamon Press, Oxford, UK, 1982) p. 98.Google Scholar
  40. 40.
    A. E. Paladino and W. D. Kingery, J. Chem. Phys. 37 (1962) 957.CrossRefGoogle Scholar
  41. 41.
    R. M. Cannon and R. L. Coble, in “Deformation of ceramic materials” (Plenum Press, New York, NY, 1975) p. 61.CrossRefGoogle Scholar
  42. 42.
    W. M. Robertson and F. E. Ekstrom, in “Kinetics of reactions in ionic systems”, edited by T. J. Gray and V. D. Frechette (Plenum Press, New York, NY, 1969) p. 273.CrossRefGoogle Scholar
  43. 43.
    J. Wang and R. Raj, J. Amer. Ceram. Soc. 73 (1990) 1172.CrossRefGoogle Scholar
  44. 44.
    R. M. German, in “Particle Packing Characteristics” (Metal Powder Industries Federation, Princeton, NJ, 1988) p. 90.Google Scholar
  45. 45.
    O. J. Whittemore and J. A. Varela, in “Sintering Processes”, edited by G. C. Kuczynski (Plenum Press, New York, NY, 1980) p. 51.CrossRefGoogle Scholar
  46. 46.
    K. S. Hwang, PhD Thesis, Rensselaer Polytechnic Institute, Troy, NY (1984).Google Scholar
  47. 47.
    M. F. Ashby, Acta Met. 22 (1974) 275.CrossRefGoogle Scholar
  48. 48.
    F. B. Swinkels and M. F. Ashby, ibid. 29 (1981) 259.CrossRefGoogle Scholar
  49. 49.
    L. L. Berrin and D. L. Johnson, in “Sintering and related phenomena”, edited by G. C. Kuczynski, N. A. Hooton and C. F. Gibbon (Gordon and Breach, New York, NY, 1967) p. 369.Google Scholar
  50. 50.
    C. F. Yen and R. L. Coble, J. Amer. Ceram. Soc. 55 (1972) 187.CrossRefGoogle Scholar
  51. 51.
    T. Maruyama and W. Komatsu, ibid. 58 (1975) 338.CrossRefGoogle Scholar
  52. 52.
    K. Kitazawa and R. L. Coble, ibid. 51 (1974) 250.CrossRefGoogle Scholar
  53. 53.
    S. I. Warshaw and F. H. Norton, ibid. 45 (1962) 479.CrossRefGoogle Scholar
  54. 54.
    Y. Oishi and W. D. Kingery, J. Chem. Phys. 33 (1960) 480.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • S. H. Hillman
    • 1
  • R. M. German
    • 1
  1. 1.Materials Engineering DepartmentRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations