Advertisement

Journal of Materials Science

, Volume 27, Issue 10, pp 2627–2630 | Cite as

Thermal conduction mechanism of aluminium nitride ceramics

  • K. Watari
  • K. Ishizaki
  • T. Fujikawa
Papers

Abstract

Extremely large grain size AIN ceramics were produced by HIP sintering at an ultra-high temperature of 2773 K without reducing the oxygen content in order to determine experimentally whether the factor controlling thermal conductivity is either grain boundaries or the internal structure of the grains. The room-temperature thermal conductivity of the HIPed AIN with a grain size of ∼40 μm was 155 Wm−1 K−1, and was almost equal to that of the normally sintered AIN with a grain size of 4 μm. Therefore, thermal conductivity at room temperature is independent of AIN grain size, or the number and amount of grain-boundary phase for reasonably well-sintered AIN ceramics. The calculated phonon mean free path of sintered bodies was 10–30 nm at room temperature, which is too small to compare with the AIN grain size. Consequently, it is shown that the thermal conductivity of sintered AIN is controlled by the internal structure of the grains, such as oxygen solute atoms.

Keywords

Oxygen Polymer Aluminium Grain Size Thermal Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Werdecker and F. Aldinger, IEEE Tram. Compon. Hybrids Manuf. Technol. 7 (1984) 399.CrossRefGoogle Scholar
  2. 2.
    G. A. Slack, J. Phys. Chem. Solids 34 (1973) 321.CrossRefGoogle Scholar
  3. 3.
    G. A. Slack, R. A. Tanzilli, R. O. Pohl and J. W. Vandersande, ibid. 48 (1987) 641.CrossRefGoogle Scholar
  4. 4.
    N. Kuramoto, H. Taniguchi, Y. Numata and I. Aso, J. Ceram. Soc. Jpn 93 (1985) 517.Google Scholar
  5. 5.
    M. Okamoto, H. Arakawa, M. Oohashi and S. Ogihara, ibid. 97 (1989) 1478.CrossRefGoogle Scholar
  6. 6.
    Y. Kurokawa, K. Utsumi and H. Takamizawa, J. Amer. Ceram. Soc. 71 (1988) 588.CrossRefGoogle Scholar
  7. 7.
    A. V. Virkar, T. B. Jackson and R. A. Cutter, ibid. 72 (1989) 2013.CrossRefGoogle Scholar
  8. 8.
    K. Watari, M. Kawamoto and K. Ishizaki, J. Mater. Sci. 26 (1991) 4727.CrossRefGoogle Scholar
  9. 9.
    K. Ishizaki and K. Watari, J. Phys. Chem. Solids 50 (1989) 1009.CrossRefGoogle Scholar
  10. 10.
    K. Ishizaki, in “Euro-ceramics, Vol. 1, Processing of Ceramics”, edited by G. D. With, R. A. Terpstra and R. Metselaar (Elsevier Applied Science, London, New York, 1989) p. 1.314.Google Scholar
  11. 11.
    C. Greskovich and S. Prochazka, J. Amer. Ceram. Soc. 64 (1981) C-96.CrossRefGoogle Scholar
  12. 12.
    K. Uehara and Y. Sakashita, in “Proceedings of the 9th HIP Seminar” (Kobe Steel Ltd, Kobe, Japan, 1989) p. 31.Google Scholar
  13. 13.
    Y. Sakashita, C. Manabe, K. Muramatsu, S. Kofune, T. Fujikawa and T. Kanda, in “Proceedings of the 2nd International Conference on Hot Isostatic Pressing — Theory and Application” (ASM International, Gaithersburg, USA, 1989) in press.Google Scholar
  14. 14.
    K. Watari, Y. Seki and K. Ishizaki, J. Ceram. Soc. Jpn 97 (1989) 174.CrossRefGoogle Scholar
  15. 15.
    Idem., J. Ceram. Soc. Jpn Int. Ed. 97 (1989) 170.Google Scholar
  16. 16.
    E. Udagawa, N. Makihara, N. Kamehara and K. Niwa, in “Proceedings of the 1st Fall Meeting of the Ceramic Society of Japan”, Nagaoka, Japan (1987) p. 241.Google Scholar
  17. 17.
    K. Ishizaki, I. L. Spain and P. Bolsaitis, J. Acoust. Soc. Amer. 59 (1976) 716.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • K. Watari
    • 1
  • K. Ishizaki
    • 1
  • T. Fujikawa
    • 2
  1. 1.Department of Materials Science and Engineering, School of Mechanical EngineeringNagaoka University of TechnologyNagaokaJapan
  2. 2.Isostatic Pressing Centre, Industrial Machinery GroupKobe Steel Co. LtdKobeJapan

Personalised recommendations