Journal of Materials Science

, Volume 27, Issue 10, pp 2580–2588 | Cite as

Ultrafine aluminium nitride powder produced by plasma-assisted chemical vapour deposition of trimethylaluminium

  • Kwang -Ho Kim
  • Chin -Hsiung Ho
  • H. Doerr
  • C. Deshpandey
  • R. F. Bunshah


Plasma-assisted chemical vapour deposition of trimethylaluminium (TMAI) with ammonia (NH3) as reactive gas, was used to prepare aluminium nitride (AIN) ultrafine powder. The effect of r.f. current, susceptor temperature and TMAI concentration on particle formation was studied. High r.f. current activated the gas-phase reaction sufficiently to obtain considerable powder formation. It was observed that increasing susceptor temperature led to an increase of powder formation rate and improved the crystallinity of as-synthesized AIN powder as well. Increasing TMAI concentration, on the other hand, led to an increase of powder formation rate of AIN, while much higher TMAI concentration induced the formation of an aluminium carbide (Al4C3) phase due to dissociation of the methyl radicals instead of the Al-C bond.


Carbide Nitride Particle Formation Powder Formation Ultrafine Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. G. Granqvist and R. A. Buhrman, J. Appl. Phys. 47 (1976) 2200.CrossRefGoogle Scholar
  2. 2.
    C. Hayashi, Physics Today December (1987) 44.Google Scholar
  3. 3.
    D. Fister, Ceram. Engng Sci. Proc. 6 (1985) 1305.CrossRefGoogle Scholar
  4. 4.
    N. Kuramoto, H. Taniguchi and I. Aso, in 36th “Electronic Components Conference” (IEEE, New York, 1986) pp. 424–9.Google Scholar
  5. 5.
    A. Matsunawa and S. Katayama, Trans. TWRI 14 (1985) 190.Google Scholar
  6. 6.
    S. Iwama, K. Hayakamwa and Y. Arizumi, J. Crystal Growth 66 (1984) 189.CrossRefGoogle Scholar
  7. 7.
    S. Prochazka and C. Greskovich, Amer. Ceram. Soc. Bull. 57 (1978) 579.Google Scholar
  8. 8.
    S. Iwama, K. Hayakawa and T. Arizumi, J. Crystal Growth 56 (1982) 265.CrossRefGoogle Scholar
  9. 9.
    J. Tomizawa, O. Takai, S. Tsujikawa and S. Goto, in “Proceedings of the International Engineers Congress — ISIAT '83 & IPAT '83”, edited by T. Takagi (Institute of Electrical Engineers of Japan, Tokyo, 1983) pp. 1411–16.Google Scholar
  10. 10.
    W. Kerner and V. S. Ban, in “Thin Film Processes”, edited by J. L. Vossen and W. Kern (Academic Press, New York, 1978) p. 257.CrossRefGoogle Scholar
  11. 11.
    J. J. Wu, H. V. Nguyen and R. C. Flagan, Langmuir 3 (1987) 266.CrossRefGoogle Scholar
  12. 12.
    “Powder Diffraction File”, Joint Committee on Powder Diffraction Standards (American Society for Testing and Materials, Philadelphia, 1976).Google Scholar
  13. 13.
    J. Feder, K. C. Russell, J. Lothe and G. M. Pound, Adv. Phys. 15 (1966) 111.CrossRefGoogle Scholar
  14. 14.
    H. M. Manasevit, F. M. Erdmann and W. I. Simpson, J. Electrochem. Soc. 118 (1971) 1864.CrossRefGoogle Scholar
  15. 15.
    A. T. Bell, in “Techniques and Applications of Plasma Chemistry”, edited by J. R. Hollahan and A. T. Bell (Wiley Interscience, New York, 1974) p. 31.Google Scholar
  16. 16.
    K. J. Sladek, J. Electrochem. Soc. 118 (1971) 654.CrossRefGoogle Scholar
  17. 17.
    S. B. Kim, S. C. Choi, S. S. Chun and K. H. Kim, J. Vac. Sci. Technol. A9 (1991) 2174.CrossRefGoogle Scholar
  18. 18.
    F. Kirkbir and H. Komiyama, Mater. Res. Soc. Symp. Proc. 121 (1988) 268.CrossRefGoogle Scholar
  19. 19.
    L. M. Yeddanapalli and C. C. Schubert, J. Chem. Phys. 14 (1946) 1.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Kwang -Ho Kim
    • 1
  • Chin -Hsiung Ho
    • 1
  • H. Doerr
    • 1
  • C. Deshpandey
    • 1
  • R. F. Bunshah
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations