Skip to main content
Log in

The thermal conductivity and viscosity of benzene

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

New absolute measurements of the thermal conductivity of liquid benzene are reported. The measurements have been carried out in the temperature range 295–340 K, at atmospheric pressure, in a transient hot-wire instrument. The accuracy of the measurements is estimated to be ±0.5%. The measurements presented in this paper have been used, in conjunction with other high-pressure measurements of thermal conductivity and viscosity, to develop a consistent theoretically based correlation for the prediction of these properties. The proposed scheme permits the density dependence of the thermal conductivity and viscosity of benzene, for temperatures between 295 and 375 K and pressures up to 400 MPa, to be represented successfully by two equations containing just two parameters characteristic of the fluid at each temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. N. de Castro, S. F. Y. Li, A. Nagashima, R. D. Trengove, and W. A. Wakeham, J. Phys. Chem. Ref. Data 15:1073 (1986).

    Google Scholar 

  2. E. Charitidou, M. Dix, M. J. Assael, C. A. N. de Castro, and W. A. Wakeham, Int. J. Thermophys. 8:511 (1987).

    Google Scholar 

  3. S. F. Y. Li, G. C. Maitland, and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 88:32 (1984).

    Google Scholar 

  4. C. A. N. de Castro, S. F. Y. Li, G. C. Maitland, and W. A. Wakeham, Int. J. Thermophys. 4:311 (1983).

    Google Scholar 

  5. S. F. Y. Li, G. C. Maitland, and W. A. Wakeham, Int. J. Thermophys. 5:351 (1984).

    Google Scholar 

  6. H. Kashiwagi, M. Oishi, Y. Tanaka, H. Kubota, and T. Makita, Int. J. Thermophys. 3:101 (1982).

    Google Scholar 

  7. G. M. Mallan, M. S. Michaelian, and F. J. Luckhart, J. Chem. Eng. Data 17:412 (1972).

    Google Scholar 

  8. R. Buchmann, Warme. Stoffubert 2:129 (1969).

    Google Scholar 

  9. J. K. Horrocks, E. McLaughlin, and A. R. Ubbelohde, Trans. Faraday Soc. 59:1110 (1963).

    Google Scholar 

  10. E. F. M. van der Held and F. G. van Drunen, Physica 15:865 (1943).

    Google Scholar 

  11. J. H. Dymond, Physica 75:100 (1974).

    Google Scholar 

  12. J. H. Dymond and T. A. Brawn, in Transport Properties of Fluids and Fluid Mixtures (HMSO, Edinburgh, 1979), p. 3.4.

    Google Scholar 

  13. J. H. Dymond, Chem. Soc. Rev. 3:317 (1985).

    Google Scholar 

  14. B. J. Alder and T. E. Wainwright, Phys. Rev. Lett. 18:988 (1967).

    Google Scholar 

  15. J. H. Dymond, Physica 85A:175 (1976).

    Google Scholar 

  16. J. H. Dymond, Chem. Phys. 17:101 (1976).

    Google Scholar 

  17. K. R. Harris and N. J. Trappeniers, Physica 104A:262 (1980).

    Google Scholar 

  18. D. Chandler, J. Chem. Phys. 62:1358 (1975).

    Google Scholar 

  19. S. F. Y. Li, G. C. Maitland, and W. A. Wakeham, High Temp. High Press. 17:241 (1985).

    Google Scholar 

  20. J. C. G. Calado, J. M. N. A. Fareleira, U. V. Mardolcar, and C. A. N. de Vastro, Proc. AIChE meeting, Houston, Tex. (1987).

  21. J. Menashe, M. Mustafa, M. Sage, and W. A. Wakeham, in Proc. 8th Symp. Thermophys. Prop., J. V. Sengers, ed. (ASME, New York, 1982).

    Google Scholar 

  22. J. H. Dymond and T. A. Brawn, in Proc. 7th Symp. Thermophs. Prop., A. Cezairliyan, ed. (ASME, New York, 1977), p. 660.

    Google Scholar 

  23. J. H. Dymond, J. Robertson, and J. D. Isdale, Int. J. Thermophys. 2:223 (1981).

    Google Scholar 

  24. Selected Values of Properties of Chemical Compounds, API Research Project 44 Texas A&M University, College Station, 1974).

  25. Ch. Molidou and M. J. Assael (sumitted for publication).

  26. S. Fisher and E. Obermeier, High Temp. High Press. 17:699 (1985).

    Google Scholar 

  27. D. T. Jamieson, J. B. Irving, and J. S. Tudhope, in Liquid Thermal Conductivity, A Data Survey to 1973 (HMSO, Edinburgh, 1975).

    Google Scholar 

  28. Y. L. Rastorguev and V. G. Nemzer, Teplo. Svoistva. Zhidk. Mater. Vses. Teplofiz. Knof. Svoistva Vesshch. Temp. 3:155 (1970) (Russian).

    Google Scholar 

  29. H. Poltz and K. Tugel, Int. J. Heat Mass Transfer 10:1075 (1967).

    Google Scholar 

  30. R. Tufeu, B. Le Neindre, and P. Johannin, C.R. Acad. Sci. Paris Ser. B 262:229 (1966).

    Google Scholar 

  31. F. W. Reiter, Ber. Bunsenges. Phys. Chem. 70:681 (1966).

    Google Scholar 

  32. J. E. S. Venart, J. Chem. Eng. Data 10:239 (1965).

    Google Scholar 

  33. W. J. Schetty and E. F. Johnson, J. Chem. Eng. Data 6:245 (1961).

    Google Scholar 

  34. N. B. Vargaftic, Proc. Conf. Thermofyn. Transp. Prop. Fluids, London (1957).

  35. L. P. Filippov, Vestnik Mosk. gos. Univ. Ser. Fiz. Mat. Estestven. Nauk. 9:45 (1954) (Russian).

    Google Scholar 

  36. L. Riedel, Chem. Ing. Tech. 23:321 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charitidou, E., Molidou, C. & Assael, M.J. The thermal conductivity and viscosity of benzene. Int J Thermophys 9, 37–45 (1988). https://doi.org/10.1007/BF00503998

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00503998

Key words

Navigation