Archives of oto-rhino-laryngology

, Volume 233, Issue 1, pp 41–48 | Cite as

Der Ursprung der efferenten labyrinthären Innervation bei Reptilien

Eine HRP-Studie bei Caiman crocodilus
  • J. Strutz
  • Chl. Beck
  • C. L. Schmidt


Der Ursprung der efferenten labyrinthären Innervation wurde bei einem Reptil, Caiman crocodilus, untersucht. Nach Injektion von Meerrettich-Peroxydase (HRP) entweder in die Basilarpapille oder in die Ampullen des horizontalen und vorderen Bogenganges wurden die Ursprungszellen der efferenten Fasern durch retrograden axonalen Transport von HRP markiert. Die Ursprungszellen der efferenten cochleären Innervation fanden sich in der Medulla oblongata im rostroventralen Anteil der oberen Olive sowie im ventral dazu gelegenen Nucleus reticularis medius. Efferente vestibuläre Zellen ließen sich beidseits im Nucleus reticularis medius nachweisen, wobei ipsilateral zur Injektion mehr markierte Zellen nachweisbar waren.


HRP Retrograder axonaler Transport Caiman crocodilus Basilarpapille Ampulle des Bogenganges 

The origin of efferent fibers to the inner ear in reptiles

A HRP study in Caiman crocodilus


The origin of efferent fibers to the inner ear was studied in Caiman crocodilus. After injection of horseradish peroxidase into the basilar papilla or into the ampullae of the horizontal and anterior semicircular canals, neurons labeled by the granular reaction product of retrogradely transported HRP were found in the medulla oblongata bilaterally. Parent cells of the efferent cochlear bundle were found in the medial reticular nucleus and in the rostroventral division of the superior olive bilaterally. Efferent vestibular neurons were found in the medial reticular nucleus bilaterally with more neurons ipsilateral to the injection site.

Key words

HRP Retrograde axonal transport Caiman crocodilus Basilar papilla Semicircular canals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baird IL (1970) The anatomy of the reptilian ear. In: Gans C, Parsons T (eds) Biology of the reptilia, vol 2. Academic Press, New York, pp 193–275Google Scholar
  2. Bartelmez GW (1915) Mauthner's cell and the nucleus motorius tegmenti. J Comp Neurol 25: 87–126CrossRefGoogle Scholar
  3. Boord RL (1961) The efferent cochlear bundle in the caiman and pigeon. Exp Neurol 3: 225–239CrossRefGoogle Scholar
  4. ten Donkelaar HJ, Nieuwenhuys R (1979) The brainstem. In: Gans C (ed) Biology of the reptilia, vol 10. Academic Press, New York, pp 160–200Google Scholar
  5. von During M, Karduck A, Richter HG (1974) The fine structure of the inner ear in caiman crocodilus. Z Anat Entwicklungsgesch 145: 41–65CrossRefGoogle Scholar
  6. Gacek RR, Lyon M (1974) The localization of vestibular efferent neurons in the kitten with horseradish peroxidase. Acta Otolaryngol (Stockh) 77: 92–101CrossRefGoogle Scholar
  7. Goldberg JM, Fernandez C (1980) Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity. J Neurophysiol 43: 986–1025CrossRefGoogle Scholar
  8. Karten HJ, Hodos W (1967) A stereotaxic atlas of the brain of the pigeon (Columbia livia). John Hopkins Press, BaltimoreGoogle Scholar
  9. Klinke R, Pause M (1980) Discharge properties of primary auditory fibers in Caiman crocodilus: comparison and contrasts to the mammalian auditory nerve. Exp Brain Res 38: 137–150CrossRefGoogle Scholar
  10. Leake PA (1974) Central projections of the statoacoustic nerve in Caiman crocodilus. Brain Behav Evol 10: 170–196CrossRefGoogle Scholar
  11. Leake PA (1976) Scanning electron microscopic observations of labyrinthine sense organs and fiber degeneration studies of secondary vestibular and auditory pathways in Caiman crocodilus. Dissertation, Univ of CaliforniaGoogle Scholar
  12. Leake PA (1977) SEM observations of the cochlear duct in Caiman crocodilus. Scanning Electron Micros II: 437–444Google Scholar
  13. Manley G (1970) Frequency sensitivity of auditory neurons in the Caiman cochlear nucleus. Z Vergl Physiol 60: 251–256CrossRefGoogle Scholar
  14. McDonald HS (1976) Methods for the physiological study of reptiles. In: Gans C (ed) Biology of the reptilia, vol 5. Academic Press, New York, pp 43–53Google Scholar
  15. Mesulam MM (1978) Tetramethylbenzidine for horseradish peroxidase neurohistochemistry: a non carcinogenic blue reaction product with superior sensitivity for visualization neural afferents and efferents. J Histochem Cytochem 26: 106–117CrossRefGoogle Scholar
  16. Miller MR (1980) The reptilian cochlear duct. In: Popper AN, Fay RR (eds) Comparative studies of hearing in vertebrates. Springer, Berlin Heidelberg New York, pp 198–204Google Scholar
  17. Opdam P, Kemali M, Nieuwenhuys R (1976) Topological analysis of the brain stem of the frogs Rana esculenta and Rana catesbeiana. J Comp Neurol 165: 307–332CrossRefGoogle Scholar
  18. Precht, W, Richter A, Ozawa S, Shimazu H (1974) Intracellular study of frog's vestibular neurons in relation to the labyrinth and spinal cord. Exp Brain Res 19: 377–393CrossRefGoogle Scholar
  19. Schwarz DWF, Schwarz IE, Tomlinson RD (1978) Avian efferent vestibular neurons identified by axonal transport of 3H adenosine and horseradish peroxidase. Brain Res 155: 103–107CrossRefGoogle Scholar
  20. Strutz J, Spatz WB (1980) Superior olivary and extraolivary origin of centrifugal innervation of the cochlea in guinea pig. A horseradish peroxidase study. Neurosci Lett 17: 227–230CrossRefGoogle Scholar
  21. Strutz J, Schmidt CL, Stürmer C (1980) Origin of efferent fibers of the vestibular apparatus in goldfish. A horseradish peroxidase study. Neurosci Lett 18: 5–9CrossRefGoogle Scholar
  22. Strutz J, Spatz WB, Schmidt CL, Stürmer C (1981) Origin auf centrifugal fibers to the labyrinth in the frog (Rana esculenta). A study with the fluorescent retrograde neuronal tracer “Fast Blue”. Brain Res 215: 323–328CrossRefGoogle Scholar
  23. Strutz J, Schmidt CL (1981) Acoustic and vestibular efferent neurons in the chicken (Gallus domesticus). A horseradish peroxidase study. Acta Otolaryngol (Stockh) (im Druck)Google Scholar
  24. Warr WB (1975) Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology, and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161: 159–182CrossRefGoogle Scholar
  25. Wever EG (1978) The reptile ear. Princeton University Press, New Jersey, pp 923–964Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • J. Strutz
    • 1
  • Chl. Beck
    • 1
  • C. L. Schmidt
    • 1
  1. 1.Universitäts-HNO-KlinikFreiburg i. Br.Bundesrepublik Deutschland

Personalised recommendations