Journal of Materials Science

, Volume 29, Issue 3, pp 844–850 | Cite as

Modelling the behaviour of gas bubbles in an epoxy resin: evaluating the input parameters for a diffusion model using a solubility parameter approach

  • J. R. Wood
  • M. G. Bader


Models based on mass diffusion theory successfully represent the growth and collapse of gas bubbles in an epoxy resin. Solution of the steady-state diffusion equations requires measurement of the diffusion coefficient and solubility of the mobile species within the resin pre-cursor. These parameters are affected by changes in temperature and/or pressure and are generally not measured as part of a processing schedule. Models have been evaluated that predict the prerequisite driving force in terms of a concentration gradient and the interaction with the processing variables from the chemistry of the resin molecule. A solubility parameter approach has been used to estimate the solubility of gas in the resin in conjunction with regular solution theory. The surface tension forces, which also play an active role in bubble stability and dynamics, have been estimated from molar attraction constants.


Surface Tension Diffusion Equation Tension Force Mass Diffusion Surface Tension Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Hull, “Introduction to Composite Materials”, (Cambridge University Press, 1981) Ch. 7, p. 145.Google Scholar
  2. 2.
    J. R. Wood, PhD thesis, University of Surrey, UK (1992).Google Scholar
  3. 3.
    J. R. Wood and M. G. Bader, in “Proceedings of 8th International Conference on Composite Materials”, Honolulu, HA, USA, 10 May (1991) pp. 1–9.Google Scholar
  4. 4.
    Shell Resins, “Epikote Technical Manual”, E.P. 1.1.12, 3rd Edn (1987).Google Scholar
  5. 5.
    H. Batzer and S. A. Zahir, J. Appl. Polym. Sci. 19 (1975) 585.CrossRefGoogle Scholar
  6. 6.
    K. Ravindranath and K. S. Ghandi, ibid. 24 (1979) 1115.CrossRefGoogle Scholar
  7. 7.
    S. Glasstone, “Textbook of Physical Chemistry”, (Mac-Millan, 1948) p. 486.Google Scholar
  8. 8.
    J. R. Wood and M. G. Bader, Compos. Manuf. submitted.Google Scholar
  9. 9.
    J. H. Hildebrand, J. Am. Chem. Soc. 38 (1916) 1452.CrossRefGoogle Scholar
  10. 10.
    P. A. Small, J. Appl. Chem. 3 (1953) 71.CrossRefGoogle Scholar
  11. 11.
    S. Wu, J. Phys. Chem. 72 (1968) 3332.CrossRefGoogle Scholar
  12. 12.
    C. M. Hansen and A. Beerbower, in “Encyclopedia of Chemical Technology”, 2nd Edn Supplement Volume, edited by A. Standen, (Interscience, New York, 1971) p. 889.Google Scholar
  13. 13.
    R. D. Harrison (ed.) “Nuffield Advanced Science, Book of Data” (Longman, London, 1972).Google Scholar
  14. 14.
    C. M. Hansen, Ind. Eng. Chem. Prod. Res. Devel. 8 (1969) 2.CrossRefGoogle Scholar
  15. 15.
    C. E. Rogers, in “Polymer Permeability”, edited by J. Comyn (Elsevier Applied Science, Barking, Essex, 1985) Ch. 2, p. 11.CrossRefGoogle Scholar
  16. 16.
    A. S. Michaels, H. J. Bixler and H. L. Fein, J. Appl. Phys. 35 (1964) 3165.CrossRefGoogle Scholar
  17. 17.
    G. J. Van Amerongen, J. Appl. Phys. 17 (1946) 972.CrossRefGoogle Scholar
  18. 18.
    S. Glasstone, “Textbook of Physical Chemistry”, (MacMillan, London, 1948) pp. 453–703.Google Scholar
  19. 19.
    J. H. Hildebrand and R. L. Scott, “Regular Solutions” (Prentice-Hall, Englewood Cliffs, NJ, 1962) Ch. 4, p. 41.Google Scholar
  20. 20.
    J. M. Prausnitz, “Molecular Thermodynamics of Fluid Phase Equilbria”, (Prentice-Hall, 1969) Ch. 8, p. 365.Google Scholar
  21. 21.
    J. H. Hildebrand and R. L. Scott, “Solubility of Non-Electrolytes”, (Reinhold, 1950) Ch. 1, p. 1.Google Scholar
  22. 22.
    J. M. Prausnitz and F. H. Shair, Am. Inst. Chem. Eng. J. 7 (1961) 682.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • J. R. Wood
    • 1
  • M. G. Bader
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of SurreyGuildfordUK

Personalised recommendations