Advertisement

Journal of Materials Science

, Volume 29, Issue 3, pp 835–843 | Cite as

Effects of grain size and specimen geometry on the transformation and R-curve behaviour of 9Ce-TZP ceramics

  • T. Liu
  • Y. -W. Mai
  • M. V. Swain
  • G. Grathwohl
Papers

Abstract

Transformation and R-curve behaviour have been investigated in 9 mol% Ce-TZP ceramics with different grain sizes. Both single-edge notched beam and short double-cantilever beam specimens were tested to measure the crack-resistance curves. The size and shape of the transformation zone not only depend on grain size, but are also strongly influenced by the specimen geometry. This different transformation behaviour has led to different crack-resistance curves. These experimental results are discussed in terms of the thermodynamics of transformation, the effect of autocatalytic transformation, and fracture mechanics.

Keywords

Polymer Grain Size Fracture Mechanic Specimen Geometry Transformation Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. McMeeking and A. G. Evans, J. Am. Ceram. Soc. 65 (1982) 242.CrossRefGoogle Scholar
  2. 2.
    B. Budiansky, J. W. Hutchinson and J. C. Lambropoulos, Int. J. Solid. Struct. 19 (1983) 337.CrossRefGoogle Scholar
  3. 3.
    D. B. Marshall and M. V. Swaim, J. Am. Ceram. Soc. 71 (1988) 399.CrossRefGoogle Scholar
  4. 4.
    R. W. Steinbrech and A. H. Heuer, Mater. Res. Soc. Symp. Proc. 60 (1986) 469.CrossRefGoogle Scholar
  5. 5.
    N. Claussen, J. Am. Ceram. Soc. 59 (1976) 49.CrossRefGoogle Scholar
  6. 6.
    G. Grathwohl and T. Liu, ibid. 74 (1991) 318.CrossRefGoogle Scholar
  7. 7.
    L. R. F. Rose and M. V. Swain, Acta Metall. 36 (1988) 955.CrossRefGoogle Scholar
  8. 8.
    C.-S. Yu and D.-K. Shetty, J. Am. Ceram. Soc. 72 (1989) 921.CrossRefGoogle Scholar
  9. 9.
    G. Grathwohl and T. Liu, ibid. 74 (1991) 3028.CrossRefGoogle Scholar
  10. 10.
    R. Warren and B. Johannesson, Powder Metall. 27 (1984) 25.CrossRefGoogle Scholar
  11. 11.
    W. F. Brown and J. E. Srawley, in “Plane-Strain Crack Toughness Testing of High Strength Metallic Materials”, ASTM Special Technical Publication, 410 (American Society for Testing and Materials, Philadelphia, PA, 1966) p. 13.Google Scholar
  12. 12.
    W. K. Wilson, Eng. Fract. Mech. 2 (1970) 169.CrossRefGoogle Scholar
  13. 13.
    S. J. Garwood, J. N. Robinson and C. E. Turner, Int. J. Fract. 11 (1975) 528.Google Scholar
  14. 14.
    J. E. Srawley and Gross, Eng. Fract. Mech. 4 (1972) 587.CrossRefGoogle Scholar
  15. 15.
    “Standard Test Methods for JIc, A Measure of Fracture Toughness”, Designate, E813 817 (Associated Board of ASTM Standards, Philadelphia, PA, 1988) pp. 686–700.Google Scholar
  16. 16.
    H. A. Ernst, P. C. Paris and J. D. Landes, in “Fracture Mechanics”, ASTM STP 743, edited by R. Roberts (American Society for Testing and Materials, Philadelphia, PA, 1981) pp. 476–507.CrossRefGoogle Scholar
  17. 17.
    E. Inghels, A. H. Heuer and R. Steinbrech, J. Am. Ceram. Soc. 73 (1990) 2023.CrossRefGoogle Scholar
  18. 18.
    A. H. Heuer, N. Claussen, W. M. Kriven and M. Ruehle, ibid. 65 (1982) 642.CrossRefGoogle Scholar
  19. 19.
    I.-W. Chen and Y. H. Chiao, Acta Metall. 29 (1981) 447.CrossRefGoogle Scholar
  20. 20.
    S. Schmauder and H. Schubert, J. Am. Ceram. Soc. 69 (1986) 534.CrossRefGoogle Scholar
  21. 21.
    M. Ruehle and W. M. Kriven, Ber. Bunse. Phys. Chem. 87 (1983) 222.CrossRefGoogle Scholar
  22. 22.
    R. H. J. Hannink, J. Mater. Sci. 18 (1983) 457.CrossRefGoogle Scholar
  23. 23.
    A. H. Heuer and R.-R. Lee, Rev. Phys. Appl. 23 (1988) 565.CrossRefGoogle Scholar
  24. 24.
    M. K. Ferber, P. F. Becher and C. B. Finch, J. Am. Ceram. Soc. 66 (1983) C2.CrossRefGoogle Scholar
  25. 25.
    R. W. Rice and R. C. Pohanka, ibid. 62 (1979) 559.CrossRefGoogle Scholar
  26. 26.
    A. G. Atkins and Y.-W. Mai, “Elastic and Plastic Fracture: Metals, Polymers, Ceramics, Composites” (Ellis Harwood, Chichester, UK, Halstend Press, NY, 1985).Google Scholar
  27. 27.
    “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials” ASTM Designation: E 399-90E1 (American Socity for Testing and Materials, Philadelphia, PA) Annual Book of ASTM Standards, edited by P. C. Fazio et al. 3.01 (1992) pp. 518–54.Google Scholar
  28. 28.
    Y. W. Mai and B. Lawn, Ann. Rev. Master. Sci. 16 (1986) 415.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • T. Liu
    • 1
  • Y. -W. Mai
    • 1
  • M. V. Swain
    • 1
  • G. Grathwohl
    • 2
  1. 1.Centre for Advanced Materials Technology, Department of Mechanical EngineeringUniversity of SydneyNew South WalesAustralia
  2. 2.Institut für Keramik im MaschinenbauUniversity KarlsruheKarlsruhe 1Germany

Personalised recommendations