Journal of Materials Science

, Volume 29, Issue 3, pp 816–823 | Cite as

Crystallization of amorphous Fe78B13Si9

  • A. R. Bhatti
  • B. Cantor


Crystallization of amorphous Fe78B13Si9 has been investigated using a combination of differential scanning calorimetry (DSC) and conventional and high-resolution transmission electron microscopy. The crystallization mechanisms and crystalline products are sensitive to the annealing temperature. At 450‡C, crystallization takes place by the growth of b c c α-Fe (Si) dendrites, while at 510 and 515‡C there are three simultaneous reactions to form dendritic b c c α-Fe (Si), elliptical crystals of b c t Fe3B and lamellar eutectic spherulites of b c c α-Fe (Si) and b c t Fe3B. Quantitative TEM shows that the b c c α-Fe (Si) dendrites and b c c α-Fe (Si)-b c t Fe3B spherulites both form with constant nucleation and growth rates, in agreement with previous. DSC measurements of an Avrami exponent of 4.


Polymer Growth Rate Microscopy Electron Microscopy Crystallization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Cantor (ed.), “Rapidly Quenched Metals III” (Metals Society, 1978).Google Scholar
  2. 2.
    T. Masumoto and K. Suzuki (eds), “Rapidly Quenched Metals IV” (Japan Institute of Metals, 1982).Google Scholar
  3. 3.
    H. Warlimont and S. Steeb (eds), “Rapidly Quenched Metals V” (North Holland, 1985).Google Scholar
  4. 4.
    H. Herman (ed.), “Rapidly Quenched Metals VI” (Elsevier, 1988).Google Scholar
  5. 5.
    H. Frederiksson and S. Savage (eds), “Rapidly Quenched Materials VIII” (Elsevier, 1991).Google Scholar
  6. 6.
    M. G. Scott, in “Amorphous Metallic Alloys”, edited by F. E. Luborsky (Butterworths, 1983) p. 144.Google Scholar
  7. 7.
    A. R. Bhatti, J. C. Barry and B. Cantor, Proc. Mater. Res. Soc. 58 (1986) 99.CrossRefGoogle Scholar
  8. 8.
    M. A. Hughes, A. R. Bhatti, G. Wei and B. Cantor, Mater. Forum 11 (1988) 21.Google Scholar
  9. 9.
    J. C. Schwartz, R. Kossowsky, J. J. Hughes and R. F. Krause, J. Appl. Phys. 52 (1981) 3324.CrossRefGoogle Scholar
  10. 10.
    T. Watnabe and M. G. Scott, J. Mater. Sci. 15 (1980) 1131.CrossRefGoogle Scholar
  11. 11.
    U. Koster and U. Herold, in “Glassy Metals 1”, edited by H. J. Guntherodt and H. Beck (Springer, Berlin, 1982) p. 225.Google Scholar
  12. 12.
    G. Wei and B. Cantor, Acta Metall. 36 (1988) 2293.CrossRefGoogle Scholar
  13. 13.
    J. A. Belk and A. L. Davies (eds), “Electron Microscopy and Microanalysis of Metals” (Elsevier, Amsterdam, 1965) p. 96.Google Scholar
  14. 14.
    C. F. Chang and J. Marti, J. Mater. Sci. 18 (1983) 2297.CrossRefGoogle Scholar
  15. 15.
    M. Von Heimendahl and G. Kuglstatter, ibid. 16 (1981) 2405.CrossRefGoogle Scholar
  16. 16.
    R. S. Tiwari, S. Ranganathan and M. Von Heimendahl, Z. Metallkde 8 (1981) 563.Google Scholar
  17. 17.
    U. Koster and U. Herold, Scripta Metall. 12 (1978) 75.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. R. Bhatti
    • 1
  • B. Cantor
    • 1
  1. 1.Oxford Centre for Advanced Materials and Composites, Department of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations