Journal of Materials Science

, Volume 29, Issue 3, pp 809–815 | Cite as

Physical and electrical properties of MnO2-doped Pb(ZrxTi1−x)O3 ceramics

  • Jong Sun Kim
  • Ki Hyun Yoon


The effects of composition on the physical property change in the phase coexistence region between the tetragonal and rhombohedral phases have been investigated as a function of zirconium concentration, x, for the MnO2-doped Pb(ZrxTi1−x)O3 (0.40⩽x⩽0.60) ceramics. The relative amount of phase coexisting between the tetragonal and rhombohedral phases affects greatly both dielectric and piezoelectric properties as a function of zirconium concentration. However, there are no detectable changes between the apparent density and microstructure. Also, in the coexistence region, the relative amount of coexistence of the rhombohedral phase increases with MnO2 addition. The inflection points of the dielectric constant shift to lower zirconium concentration in proportion to the MnO2 addition, owing to the substitution effect on the PZT lattice site.


Dielectric Constant MnO2 Inflection Point Detectable Change Piezoelectric Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Turik, M. F. Dupriyanov, E. N. Sidorenko and D. M. Zaitsev, Sov. Phys. Tech. Phys. 25 (1980) 1251.Google Scholar
  2. 2.
    K. Kakegawa, J. Mohri, S. Shirasaki and K. Takahashi, J. Am. Ceram. Soc. 65 (1982) 515.CrossRefGoogle Scholar
  3. 3.
    V. A. Isupov, Ferroelectrics 46 (1983) 217.CrossRefGoogle Scholar
  4. 4.
    F. Vasilu, P. Gr. Lucuta and F. Constantinescu, Phys. Status Solidi (a) 80 (1983) 637.CrossRefGoogle Scholar
  5. 5.
    T. Kala, ibid. 78 (1983) 277.CrossRefGoogle Scholar
  6. 6.
    J. S. Kim, K. H. Yoon, B. H. Choi and J. M. Lee, J. Kor. Ceram. Soc. 27 (1990) 187.Google Scholar
  7. 7.
    Idem, ibid. 28 (1991) 297.Google Scholar
  8. 8.
    K. Kakegawa and J. Mohri, Solid State Commun. 24 (1977) 769.CrossRefGoogle Scholar
  9. 9.
    S. A. Mabud, J. Appl. Crystallogr. 13 (1980) 211.CrossRefGoogle Scholar
  10. 10.
    L. Hahn, K. Uchino and S. Nomura, Jpn J. Appl. Phys. 17 (1978) 634.Google Scholar
  11. 11.
    T. B. Weston, A. H. Webster and V. M. McNamara, J. Am. Ceram. Soc. 52 (1969) 253.CrossRefGoogle Scholar
  12. 12.
    H. Ouchi, M. Nishida and S. Hayakawa, ibid. 49 (1966) 577.CrossRefGoogle Scholar
  13. 13.
    Y. S. Ng and S. M. Alexander, Ferroelectrics 51 (1983) 81.CrossRefGoogle Scholar
  14. 14.
    T. Nakamura, Ceramics 14 (1979) 894.Google Scholar
  15. 15.
    E. Sawaguchi, Jpn J. Appl. Phys. 8 (1953) 615.CrossRefGoogle Scholar
  16. 16.
    P. Ari-Gur and L. Benguigui, J. Phys. D Appl. Phys. 8 (1975) 1856.CrossRefGoogle Scholar
  17. 17.
    Idem, Solid State Commun. 15 (1974) 1077.CrossRefGoogle Scholar
  18. 18.
    V. A. Isupov, Sou. Phys. Solid State 16 (1975) 1370.Google Scholar
  19. 19.
    P. Gr. Lucuta, F. Constantinescu and D. Barb, J. Am. Ceram. Soc. 68 (1985) 533.CrossRefGoogle Scholar
  20. 20.
    E. C. Fesenko, A. Ya. Dantsiger, L. A. Resnitchenko and M. F. Kupriyanov, Ferroelectrics 41 (1982) 137.CrossRefGoogle Scholar
  21. 21.
    D. Berlincourt and H. A. Krueger, J. Appl. Phys. 30 (1959) 1804.CrossRefGoogle Scholar
  22. 22.
    V. A. Isupov and M. Boudys, Ferroelectrics 41 (1982) 111.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Jong Sun Kim
    • 1
  • Ki Hyun Yoon
    • 1
  1. 1.Department of Ceramic EngineeringYonsei UniversitySeoulKorea

Personalised recommendations