Journal of Materials Science

, Volume 29, Issue 3, pp 786–799 | Cite as

Compressional behaviour of carbon fibres

Part IIModulus softening
  • N. Melanitis
  • P. L. Tetlow
  • C. Galiotis
  • S. B. Smith


Spectroscopic-mechanical studies have been conducted on a range of carbon fibres by bonding single filaments on the top surface of a cantilever beam. Such a loading configuration allows the acquisition of the Raman spectrum of carbon fibres and the derivation of the Raman frequency strain dependence in tension and compression. Strain hardening phenomena in tension and strain softening phenomena in compression were closely observed. The differences in the slopes of the Raman frequency versus applied strain curves in tension and compression respectively, have been used to obtain good estimates of the compression moduli. A method of converting the fibre Raman frequency versus strain data into stress-strain curves in both tension and compression, is demonstrated. Values of fibre stress and fibre modulus at failure in compression compare exceptionally well with corresponding estimates deduced from full composite data. The mode of failure in compression has been found to depend upon the carbon fibre structure. It is demonstrated that certain modifications in the manufacturing technology of PAN-based fibres can lead to fibres which show resistance to catastrophic compressive failure without significant losses in the fibre compressive modulus.


Strain Hardening Carbon Fibre Cantilever Beam Fibre Stress Applied Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ASTM D3410-87, “Standard Test Method for Compressive Properties of Unidirectional and Cross-Ply Fiber-Resin Composites”, Annual Book of ASTM Standards, Philadelphia, (1989) p. 1996.Google Scholar
  2. 2.
    J. M. Whitney, I. M. Daniel and R. B. Pipes, “Experimental Mechanics of Fiber Reinforced Composite Materials”, The Soc. for Exp. Mechanics, New Jersey (1984).Google Scholar
  3. 3.
    A. S. Crasto, R. Y. Kim, J. M. Whitney, “Composites Testing & Characterisation”, ECCM-CTS, eds P. J. Hogg, G. D. Sims, F. L. Matthews, A. R. Bunsell and A. Massiah (ECCM-CTS, Amersterdam, 1992) p. 113.Google Scholar
  4. 4.
    J. G. Haeberle, F. L. Matthews (1990), Proc. ECCM'90, Developments in the Science and Technology of Composite Materials, Stuttgart (Elsevier, London, (1990) p. 517.CrossRefGoogle Scholar
  5. 5.
    T. B. Stecenko, M. M. Stevanivic, J. Mat. Sci. 24 (1990) 1152.Google Scholar
  6. 6.
    J. G. Haeberle, F. L. Matthews, in the Proceedings of Applied Solid Mechanics-3, April 1989, Guildford (Elsevier Applied Science, London, 1989).Google Scholar
  7. 7.
    G. J. Curtis, J. M. Milne, W. N. Reynolds, Nature 220 (1968) 1024.CrossRefGoogle Scholar
  8. 8.
    M. Martinez, M. R. Piggott, D. M. R. Bainbridge, B. Harris, J. Mat. Sci. 16 (1981) 2831.CrossRefGoogle Scholar
  9. 9.
    S. B. Batdorf, in the Proceedings of the International Conference on Composite Materials and Structures, Beijing, China 1986, Ed. T. T. Loo, pp. 746–750.Google Scholar
  10. 10.
    J. D. H. Hughes, Carbon 24 (1986) 551.CrossRefGoogle Scholar
  11. 11.
    P. Arsenovic, H. Jiang, R. K. Eby, W. W. Adams, J. M. Liu, in the Proceedings of CARBON' 88, Ed. McEnaney, T. J. Mays, p. 485 (1988).Google Scholar
  12. 12.
    N. Melanitis, C. Galiotis, J. Mat. Sci. 25 (1990) 5081.CrossRefGoogle Scholar
  13. 13.
    A. Crasto, R. Kim and J. Whitney, Int. SAMPE Symposium 36 (1991) 1649.Google Scholar
  14. 14.
    C. Vlattas, C. Galiotis, Polymer 32 (1991) 1789.CrossRefGoogle Scholar
  15. 15.
    D. Sinclair, J. App. Phy. 21 (1968) 380.CrossRefGoogle Scholar
  16. 16.
    W. R. Jones, W. J. Johnson, Carbon 9 (1971) 645.CrossRefGoogle Scholar
  17. 17.
    H. M. Hawthorne, E. Teghtsoonian, J. Mat. Sci. 10 (1975) 41.CrossRefGoogle Scholar
  18. 18.
    D. J. Boll, R. M. Jensen, L. Cordner, W. D. Bascom, J. Comp. Mat. 24 (1990) 208.CrossRefGoogle Scholar
  19. 19.
    S. J. DeTeresa, R. S. Potter, R. J. Farris, J. Mater. Sci. 10 (1985) 1624.Google Scholar
  20. 20.
    S. J. DeTeresa, R. S. Potter, R. J. Farris, J. Mat. Sci. 23 (1988) 1886.CrossRefGoogle Scholar
  21. 21.
    T. Oshawa, M. Miwa, M. Kawade, E. Thushima, J. App. Pol. Sci. 39 (1990) 1733.CrossRefGoogle Scholar
  22. 22.
    M. G. Dobb, D. J. Johnson, C. R. Park, J. Mater. Sci. 25 (1990) 829.CrossRefGoogle Scholar
  23. 23.
    J. B. Donnet, R. P. Bansal, “Carbon Fibres” (Marcel Dekker Inc., New York 1984).Google Scholar
  24. 24.
    M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldber, “Graphite Fibres and Filaments” (Springer-Verlag, Berlin, 1988).CrossRefGoogle Scholar
  25. 25.
    S. C. Bennet, D. J. Johnson, Proceedings of London Carbon and Graphite Conference (1978) 1 p. 377.Google Scholar
  26. 26.
    M. Guigon, A. Oberlin, G. Desarmot, Fibre Sci. and Tech. 20 (1987) 177.CrossRefGoogle Scholar
  27. 27.
    W. Ruland, J. Appl. Phy. 38 (1967) 3585.CrossRefGoogle Scholar
  28. 28.
    F. Tuinstra, J. Koenig, J. Chem. Phys. 53 (1970) 1126.CrossRefGoogle Scholar
  29. 29.
    F. Tuinstra, J. Koenig, J. Comp. Mat. 4 (1970) 492.CrossRefGoogle Scholar
  30. 30.
    G. Katagiri, H. Ishida, A. Ishitani, Carbon 26 (1988) 565.CrossRefGoogle Scholar
  31. 31.
    P. Lespade, A. Marchand, M. Couzi, F. Cruege, Carbon 22 (1984) 375.CrossRefGoogle Scholar
  32. 32.
    R. P. Vidano, D. B. Fischbach, L. J. Willis, T. M. Loehr, Solid State Communications 39 (1981) 341.CrossRefGoogle Scholar
  33. 33.
    N. Melanitis, C. Galiotis, submitted to Carbon.Google Scholar
  34. 34.
    I. M. Robinson, M. Jahikhani, R. J. Day, R. J. Young, C. Galiotis, J. Mat. Sci. Letters 6 (1987) 1212.CrossRefGoogle Scholar
  35. 35.
    C. Galiotis, D. N. Batchelder, J. Mat. Sci. Lett. 7 (1988) 545.CrossRefGoogle Scholar
  36. 36.
    N. Melanitis, PhD Thesis, University of London 1991.Google Scholar
  37. 37.
    R. S. Bretzlaff, R. P. Wool, Macromolecules 16 (1983) 1907.CrossRefGoogle Scholar
  38. 38.
    K. Tashiro, G. Wu, M. Kobayashi, J. Pol. Sci. B, 28 (1990) 2527.CrossRefGoogle Scholar
  39. 39.
    C. Galiotis, Comp. Sci. and Tech. 42 (1991) 125.CrossRefGoogle Scholar
  40. 40.
    UK Patent Application, GB 2084975 Pepper, R. T., Nelson, D. C. and Lewing, D. S. 1981.Google Scholar
  41. 41.
    M. K. Jain, M. Balasubramanian, P. Desai and A. S. Abhiraman, J. Mater. Sci. 22 (1987) 301.CrossRefGoogle Scholar
  42. 42.
    S. P. Timoshenko, J. M. Gere, “Theory of Elasticity” (McGraw-Hill, N.Y. 1961).Google Scholar
  43. 43.
    P. L. T. Tetlow, N. Melanitis, C. Galiotis, submitted to Carbon.Google Scholar
  44. 44.
    A. S. Crasto, D. P. Anderson, Proc. ASC'90, American Society of Composites (1990) p. 809.Google Scholar
  45. 45.
    S. Kumar, W. W. Adams and T. E. Helminiak, J. Reinforced Plastics 7 (1988) 108CrossRefGoogle Scholar
  46. 46.
    S. Kumar and T. E. Helminiak, “The Materials Science and Engineering of Rigid Rod Polymers”, eds Adams W. W., Eby R. K. and McLemore D. E., Mater. Res. Soc. Symp. Proceedings 134 (M.R.S., Pittsburg PA, 1989) p. 363.Google Scholar
  47. 47.
    S. Kumar, V. R. Mehta, D. P. Anderson and A. S. Crasto, 37th Int. SAMPE Symp. (SAMPE, 1992) p. 67.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • N. Melanitis
    • 1
  • P. L. Tetlow
    • 1
  • C. Galiotis
    • 1
  • S. B. Smith
    • 2
  1. 1.Materials DepartmentQueen Mary and Westfield CollegeMile EndUK
  2. 2.Courtaulds ResearchCoventryUK

Personalised recommendations